• Title/Summary/Keyword: endocrine disruption

Search Result 68, Processing Time 0.032 seconds

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.180-180
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EBCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. Here we developed an in-house cDNA microarray, named KISTCHIP-400, with 401 clones, hormone related genes, factors, and ESTs, based on public database and research papers. Theses clones contained estrogen, androgen, thyroid hormone St receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. And to validate the KISTCHIP-400, we investigated gene expression profiles with reference hormones, 10$\^$-8/ M 17be1a-estradiol, 10$\^$-7/ M testosterone, 10$\^$-7/ M progesterone, and thyroxin in MCF-7 cell line. Although it is in first step of validation, low doses and combinations of EDCs need to be tested. Our preliminary results that indicate the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

  • PDF

Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs) (혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구)

  • Na, Seung-Min;Ahn, Yun-Gyong;Cui, Ming-Can;Cho, Sang-Hyun;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.231-239
    • /
    • 2011
  • Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

The Mentum Deformity of C. riparius Following Exposure to Bisphenol A and 4-nonylphenol (Bisphenol A와 4-nonylphenol에 노출된 C. riparius (Diptera: Chiromidae)의 하순기절 기형성)

  • Kwak, Inn-Sil;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.1
    • /
    • pp.66-71
    • /
    • 2007
  • The fourth instar larvae of C. riparius were treated with potential endocrine disruption chemicals (EDCs) such as bisphenol A (BPA) and 4-nonylphenol and the effects of morphological abnormalities were observed. The deformities of the mentum following exposure to EDCs showed the smooth tooth, the loss of tooth and deformed tooth. The incidence rates of the mentum deformity were associated with chemicals: BPA $31{\sim}90%$, and 4-nonlyphenol was $40{\sim}80%$. As the concentration of BPA increased, the incidence of deformed mentum was dose dependent. While the incidences of deformed mentum following exposure to 4-nonlyphenol was not associated with their concentrations. The deformed MLT observed smooth or round tooth and the deformity of LT showed loss of one or more than tooth. Also, the MIX type was usually smooth or loss tooth. The abundance of deformity type for the mentum showed MIX (MLT+LT) > LT (lateral teeth) > MLT (median lateral teeth).

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Safty of Alternatives for Endocirne Disrupting Substances (내분비계장애물질 대체소재의 안전성)

  • Park, Chan Jin;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.361-374
    • /
    • 2015
  • Endocirne disruptors (EDs) can cause fertility decrease, developmental disorder, and even cancer in animals. Until 90's, EDs were used in various synthetic products including paints, coatings, detergents, plastics, and plasticizers. Currently, in several countries, the production, trade and use of EDs or EDs-suspected chemicals have been regulated while activity to screen the alternatives for EDs including bisphenol-A, phthalate and nonylphenol is active. Although various toxicity test method was developed and applied for screening of alternatives, however, the safety of alternatives has been not fully demonstrated. Some alternatives have high structural similarity with existing EDs, raising the possible risk of endocrine disruption by alternatives. In an effort to develop the safe alternatives, we reviewed the effects of EDs such as bisphenol-A, phthalates, nonylphenol and their substituents. In addition, in-silico analysis for endocrine disrupting activities of some alternatives was presented.

Induction of Intersex and Masculinization of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) by Zinc

  • Ju, Sun-Mi;Park, Jung-Jun;Lee, Jung-Sick
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.339-344
    • /
    • 2009
  • This study aims to find out the effect of heavy metals, as is the case of EDCs (endocrine disrupting chemicals), on reproductive endocrine disruption of aquatic animals. In the present experiment zinc, which is a heavy metal well known for its androgenous activity, was used. The experimental period was 24 weeks, starting in November during the inactive stage of the clam's reproductive cycle. The experimental groups were composed of one control condition and three zinc exposure conditions (0.64, 1.07, and 1.79 mg/L). The sex ratio (F:M) was 1:1.06 in the control group and 1:1.70 in all the exposed group, illustrating the tendency for higher proportion of males with increases in zinc concentration. Gonad maturity was higher in 1.07, and 1.79 mg/L groups compared to the control group, with higher maturity observed in males than females. Intersex individuals made up 24.7% of the exposed group, while females exhibited a higher ratio than the males with increasing zinc concentration. The results of this study indicate that zinc functions as an androgenic effector on the reproduction of Gomphina veneriformis.

The Expression Patterns of Estrogen-responsive Genes by Bisphenol A in the Wild Medaka (Oryzias sinensis)

  • Lee, Chul-Woo;Park, Min-Kyung;Kim, Hyun-Mi;Kim, Hak-Joo;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.185-189
    • /
    • 2007
  • Gene expression levels of choriogenin, vitellogenin and estrogen receptor were determined using Reverse transcription (RT)-PCR technique after exposure to estrogenic chemical bisphenol A in the Korean wild medaka (Oryzias sinensis). These genes have been known to be induced in male test fish when the fish are exposed to estrogenic chemicals. Therefore they can be suggested as a possible biomarker of endocrine disruption in fish, however, relatively little has been known about these genes expression by estrogenic chemicals in Korean wild fish. Mature male Oryzias sinensis were treated with bisphenol A at nominal concentrations of 0.02, 0.2 and 2 mg/L for 6 days and total RNA was extracted from the livers of treated fish for RT-PCR. When the five biomarker genes were amplified by RT-PCR in the same condition, mRNA induction level of each gene was elevated with different sensitivities. Conclusively, the results of this work indicated that measurement of vitellogenin and choriogenin using RT-PCR is effective as a simple tool for the screening of estrogenic chemicals and suggested that O. sinensis would be a suitable model fish for the environmental risk assessment of potential endocrine disruptors.

Potential Endocrine Disrupting Effects of Phthalates in In Vitro and In Vivo Models

  • Nguyen, Tien-Thanh;Jung, Eui-Man;Yang, Hyun;Hyun, Sang-Hwan;Choi, Kyung-Chul;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.207-213
    • /
    • 2010
  • Thousands of new chemicals have been introduced to environment during last decades. Many of them and common consumer products have been shown to be the endocrine disrupting chemicals. One such chemical group is the phthalates, used in soft poly vinyl chloride (PVC) material and in a huge number of consumer products. The prevalence of these modem chemicals have a remarkable increase. Approximately 3.5 million tons of the main phthalate, di-(2-ethylhexyl) phthalate (DEHP), are produced annually worldwide and indeed, DEHP is considered a ubiquitous environmental contaminant. It has been demonstrated that high doses of phthalate can adversely affect adult and developing animals. In this review, we critically discuss the conclusions of recently original research papers and provide an overview of studies on reproductive disrupting effects of phthalates. In addition, we review the reproductive toxicity data of phthalates in some in vitro research and in both male and female reproductive systems in experimental and domestic animals. Finally, we point out some critical issues that should be addressed in order to clarify the implication of phthalates for human reproduction.

Current State of Use and the Risks of Bisphenols: A Minireview (비스페놀류의 사용 현황과 위해성: 소고)

  • Song, Chang Yeob;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.581-594
    • /
    • 2017
  • Bisphenol A(BPA), known as a typical endocrine disruptor, has been used commercially and widely for plastics and epoxy resins. BPA-based plastic is used extensively for the production of water bottles, food containers, CDs, DVDs, and panels that can be applied in construction. Epoxy resins containing BPA are used for coatings on the insides of water pipes, food cans, and thermal papers that are used in sales receipts. As its estrogenic effects and other adverse health effects have published, BPA has been regulated in many countries, and there have been efforts made to replace BPA. Other bisphenols substitutes such as bisphenol S(BPS) and bisphenol F(BPF) have been used. Currently, BPS- and BPF-based products labeled BPA-free products have been widely consumed. Because of structural similarities with BPA, however, these alternatives also show endocrine disruption effects like BPA, and many studies on adverse health effects of these alternatives are being reported. In this review, we describe the adverse health effects of bisphenols and the current status of regulation.