• Title/Summary/Keyword: end-to-end joint

Search Result 651, Processing Time 0.023 seconds

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.

Influence of end-joint methods on magnetization loss in striated helical conductors

  • Kim, Woo-Seok;Kim, Yungil;Choi, Kyeongdal;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2013
  • To reduce the magnetization loss of a coated conductor, the striation and the transposition have to be accomplished for magnetic decoupling. The loss reduction effect in incomplete as well as complete striated YBCO CCs was reported in previous research. At the case of the incomplete striated sample, the end region of the sample is non-striated. So, it is not jointed with each other. In power applications, the joint is needed because current leads must be connected with HTS coils. In this research, the influence of end-joint methods with copper and superconducting joint on magnetization loss in striated YBCO CC and spiral winding samples are presented and compared with non-striated measured result.

Joint Mobilization Techniques of the Shoulder Joint Dysfunction (견관절 장애와 관절 가동운동(mobilization))

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.39-49
    • /
    • 1996
  • The techniques of joint mobilization and traction are used to improve joint mobility or to decrease pain by restoring accessory movements to the shoulder joints and thus allowing full, nonrestriced, pain-free range of motion. In the glenohumeral joint, the humeral head would be the convex surface, while the glenoid fossa would be the concave surface. The medial end of the clavicle is concave anterioposteriorly and convex superioinferiorly, the articular surface of the sternum is reciprocally curved. The acromioclavicular joint is a plane synovial joint between a small convex facet on lateral end of the clavicle and a small concave facet on the acromion of the scapula. The relationship between the shape of articulating joint surface and the direction of gliding is defined by the convex-concave rule. If the concave joint surface is moving on a stationary convex surface, gliding occur in the same direction as the rolling motion. If the convex surface is moving on a stationary concave surface, gliding will occur in an opposite direction to rolling. Hypomobile shoulder joint are treated be using a gliding technique.

  • PDF

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Structural Behavior Evaluation of Mg-GFRP Composite Single-Lap Bonded Joints With Different End Shapes (한 끝단 형상에 따른 마그네슘 합금과 유리섬유 복합소재 단일겹치기 본드 조인트 거동 분석)

  • Kim, Jung-Seok;Im, Jae-Young;Lee, Woo-Geun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.391-396
    • /
    • 2014
  • In this study, the strength of magnesium-GFRP/epoxy single-lap bonded joints are experimentally evaluated with different end shapes. In order to achieve this, four different single-lap joints with different end shapes are fabricated and the failure load is measured under tensile loading tests. From the test results, the single-lap joint with a square end exhibits the lowest failure load while the single-lap joint with reverse tapering and a spew fillet has the highest stress values. It has 11.1% higher failure strength than the single-lap joint with a square end.

Effects of Joint Position on the Distraction Distance in Patients with Adhesive Capsulitis of Glenohumeral Joint

  • Park, Sam Sik;Kim, Ki Do;Hwang, Yong Pil;Moon, Ok Kon;Kim, Bo Kyung;Choi, Wan Suk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.824-827
    • /
    • 2015
  • The purpose of this study was to investigate the effects of joint position on the distraction distance in patients with adhesive capsulitis of glenohumeral joint. The study was conducted upon 20 adults in their 40's with the findings of adhesive capsulitis of glenohumeral joint. These subjects were subdivided into 3 groups, which were a group with neutral position(n=7), second group with resting position(n=7) and third group with end-range position(n=6). After having the subject wearing sleeveless shirts exposing armpit and lying straight on the plinth, a physical therapist with OMT qualification pulled glenohumeral joint at the Grade III of Kaltenborn-Evjenth traction; and the distance between glenoid fossa and humeral head was measured with ultrasound. Following the application of traction, the group with resting position($.67{\pm}0.29$) exhibited the longest distance between humeral head and glenoid fossa, and it was followed by neutral position($.50{\pm}0.25$) and end-range position($.35{\pm}.21$) in this order. From the comparison of these groups, there was no significant difference in distraction distance between resting position and neutral position; and there was again no significant difference in distraction distance between end-range position and neutral position. However, there was a significant difference in distraction distance between end-range position and resting position(p<.05). Upon application of the Grade III of Kaltenborn-Evjenth traction, it was evident that the distance between humeral head and glenoid fossa can be varied depending on the location of the joint.

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

A Study on the Characteristics of Zr-4 End Cap Welded Joints Using Resistance Upset Welding (저항업셋 용접법을 이용한 Zr-4 End Cap용접부의 특성에 관한 연구)

  • 박철주;김형수;이영호;강원석
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.240-249
    • /
    • 1992
  • The objective of this study is to investigate the characteristics of welded joints on the Zircaloy-4 resistance upset welding for HWR(Heavy Water reactor)fuel rods. To estimate the characteristics of welded joints, the various tests were performed on the test coupons systematically with a wide range of each welding parameters in terms of a tensile test, burst test, knoop hardness test and metallography. Major results obtained in this study are as follows: 1. The tube and machined with 120.deg. projection was the reliable weld joint design for the nuclear fuel rod end cap welding. 2. As the weld current and the amount of upset increased linearly with increasing welding main heat input, it could make an estimate of their variation in accordance with the phase shift control. 3. It was found that an increase in squeeze force has an effect on the upset contour of welded joint because the amount of upset were increased by the change of squeeze force.

  • PDF

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.