• 제목/요약/키워드: end-plate connections

검색결과 80건 처리시간 0.023초

Experimental investigations on resilient beam-column end-plate connection with structural fuse

  • Arunkumar Chandrasekaran;Umamaheswari Nambiappan
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.315-337
    • /
    • 2023
  • The steel structure is an assembly of individual structural members joined together by connections. The connections are the focal point to transfer the forces which is susceptible to damage easily. It is challenging to replace the affected connection parts after an earthquake. Hence, steel plates are utilised as a structural fuse that absorbs connection forces and fails first. The objective of the present research is to develop a beam-column end plate connection with single and dual fuse and study the effect of single fuse, dual fuse and combined action of fuse and damper. In this research, seismic resilient beam-column end plate connection is developed in the form of structural fuse. The novel connection consists of one main fuse was placed horizontally and secondary fuse was placed vertically over main fuse. The specimens are fabricated with the variation in number of fuse (single and dual) and position of fuse (beam flange top and bottom). From the fabricated ten specimens five specimens were loaded monotonically and five cyclically. The experimental results are compared with Finite Element Analysis results of Arunkumar and Umamaheswari (2022). The results are critically assessed in the aspect of moment-rotation behaviour, strain in connection components, connection stiffness, energy dissipation characteristics and ductility. While comparing the performance of total five specimens, the connection with fuse exhibited superior performance than the conventional connection. An equation is proposed for the moment of resistance of end-plate connection without and with structural fuse.

경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험 (Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice)

  • 임종진;김동관;이상현;박철수;이창남;엄태성
    • 한국강구조학회 논문집
    • /
    • 제29권2호
    • /
    • pp.181-192
    • /
    • 2017
  • 최근 경사단부강판과 고장력 볼트를 이용한 보 이음(Inclined end-plate beam splice) 공법이 개발되었다. 단부강판은 브래킷 단부에 용접되고 연결보는 고장력 볼트를 통해 이음시킨다. 기둥면에는 브래킷이 용접되고, 브래킷과 연결보 단부에 각각 경사단부강판과 고장력 볼트를 이용하여 이음 시킨다. 이 연구에서는 총 6개의 외부 보-기둥 모멘트접합부의 반복가력실험을 수행하였다. 실험변수는 단부강판 상세와 볼트 배열 상세이다. 모든 실험체는 AISC Design Guide 4에 따라 단부강판 및 볼트에 의한 모멘트 저항성능이 보 이음부 요구모멘트보다 크도록 설계되었다. 실험결과, 확장된 단부강판(Extended end-plate)을 사용한 보이음부의 경우 이음부 단부강판의 지레작용 및 볼트의 취성 파단 없이 중앙 보 모멘트가 단부 브래킷으로 효과적으로 전달되었다. 하지만, 보-기둥 접합부의 변형능력은 기둥면 보 플랜지 용접부의 취성파단으로 제한적이었다. 실험결과를 바탕으로, 기울어진 단부강판 이음부를 갖는 보-기둥 모멘트접합부의 내진설계를 위한 개선사항을 제안하였다.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

P.E.B 시스템에서 시공상태에 따른 엔드플레이트 접합부의 구조성능평가 (Structural Performance Evaluation of End-plate Connections According to Constructional Quality in P.E.B System)

  • 이은택
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.461-468
    • /
    • 2012
  • P.E.B(Pre-Engineering Building) 시스템은 휨모멘트의 크기에따라 부재형상을 최적화한 변단면부재로 설계 사용하는 경제적인 시스템을 의미한다. 이러한 P.E.B 시스템에서 변단면부재의 접합은 일반 철골접합인 마찰접합이 어렵기 때문에 현장조립이 간편한 엔드플레이트 접합이 사용되고 있다. 지압형 인장접합인 엔드플레이트 접합방식은 국내 P.E.B 시스템의 가장 일반적인 접합방식이며, 이미 그 안정성이 안전하다고 판명되었다. 그러나 이러한 엔드플레이트 접합부의 현장볼트 체결시공에 있어서 엔드플레이트와 변단면보 또는 리브의 용접에 의한 열변형 등으로 인해 엔드플레이트의 수직불량이 발생하여 현장에서 설치된 접합부의 벌어짐 현상이 관측되고 있다. 따라서 본 연구에서는 엔드플레이트 초기접합 결함(간격)을 실험변수로 하여 휨모멘트를 받는 엔드플레이트 접합부의 볼트에 대한 허용내력을 조사하여 구조안정성 검토를 수행하였다.

Developing connection design rules in China

  • Shi, Yongjiu
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.141-158
    • /
    • 2005
  • The new version of Code for Design of Steel Structures (GB50017-2003) and other design standards in China were released over the last two years. Comparing with the previous version (GBJ17-88), many clauses covering the connection design have been revised. A number of additional provisions are supplemented to specify the design requirements for beam-column moment connections, as well as gusset plates for truss joints. In this paper, a summary on the design rules on connections specified in the current Chinese code is presented, and relevant commentary and background information is provided whenever appropriate. The design criteria governing weld and bolt resistance is examined and reviewed. Moreover, several issues such as detailing requirements for stiffeners and end-plate connections are discussed.

Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns

  • Ding, Fa-xing;Pan, Zhi-cheng;Liu, Peng;Huang, Shi-jian;Luo, Liang;Zhang, Tao
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.447-462
    • /
    • 2020
  • The paper aims to investigate the mechanical mechanism and seismic effect of stiffeners in blind bolt endplate connection to CFST column. A precise 3D finite element model with considering the cyclic properties of concrete and steel materials was established, and the efficiency was validated through monotonic and cyclic test data. The deforming pattern and the seismic performance of the unstiffened and stiffened blind bolt endplate connections were investigated. Then a parametric analysis was conducted to analyze the contribution of stiffeners and the joint working behaviors with endplate under cyclic load. The joint stiffness classifications were compared and a supplement stiffness classification method was proposed, and the energy dissipation ability of different class connections were compared and discussed. Results indicated that the main deformation pattern of unstiffened blind bolt endplate connections was the local bending of end plate. The vertical stiffeners can effectively alleviate the local bending deformation of end plate. And influence of stiffeners in thin endplate and thick endplate was different. Based on the stiffness of external diaphragm welded connection, a more detailed rigidity classification was proposed which included the pin, semi-rigid, quasi-rigid and rigid connection. Beam was the main energy dissipation source for rigid connection. For the semi-rigid and quasi-rigid connection, the extended endplate, stiffeners and steel beam would all participate in the energy dissipation.

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

Behaviour of bolted connections in concrete-filled steel tubular beam-column joints

  • Beena, Kumari;Naveen, Kwatra;Shruti, Sharma
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.443-456
    • /
    • 2017
  • Many authors have established the usefulness of concrete filled steel tubular (CFST) sections as compression members while few have proved their utility as flexural members. To explore their prospective as part of CFST frame structures, two types of connections using extended end plate and seat angle are proposed for exterior joints of CFST beams and CFST columns. To investigate the performance and failure modes of the proposed bolted connections subjected to static loads, an experimental program has been executed involving ten specimens of exterior beam-to-column joints subjected to monotonically increasing load applied at the tip of beam, the performance is appraised in terms of load deformation behaviour of joints. The test parameters varied are the beam section type, type and diameter of bolts. To validate the experimental behaviour of the proposed connections in CFST beam-column joints, finite element analysis for the applied load has been performed using software ATENA-3D and the results of the proposed models are compared with experimental results. The experimental results obtained agree that the proposed CFST beam-column connections perform in a semi-rigid and partial strength mode as per specification of EC3.

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.