• Title/Summary/Keyword: end-gas temperature

Search Result 153, Processing Time 0.017 seconds

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Early Life History and Spawning Behavior of the Gobiid Fish, Mugilogobius abei (Jordan et Snyder) Reared in the Laboratory (모치망둑, Mugilogobius abei(Jordan et Snyder)의 산란행동(産卵行動)및 초기생활사(初期生活史))

  • Kim, Yong-Uk;Han, Kyeong-Ho
    • Korean Journal of Ichthyology
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Spawning behavior and development of eggs and larvae of Mugilogobius abei were observed in the laboratory at Pusan, Korea. The adult male of Mugilogobius abei was observed making nest-like spawning-bed to lay eggs and showing territorial and courtship behaviors. The eggs were transparent and spherical in shape, measuring 0.40~0.50 mm in diameter. They have a bundle of adhesive filaments at their basal end and a cluster of small oil globules. The eggs became ellipsoid shape after the insemination and measured about 0.93~0.96 mm on the long axis. Hatching began about 110 hours after fertilization at water temperature of $24.5{\sim}25.5^{\circ}C$. The newly hatched larvae were 2.04~2.10 mm in total length, with 24~25(8~9+16) myomeres. Many melanophore and guanophore are distributed on eye cups, gas bladder, optic vesicle and the caudal region. Four days after hatching the yolk and oil-globule were completely absorbed and the larvae attained a total length 2.20~2.35 mm. The larvae swam actively in the aquarium and start to practice feeding on the rotifer. Twelve days after hatching, the larvae averaged 3.20 mm in TL and the caudal notochord flex at $45^{\circ}$. Rudimental second dorsal, anal, caudal and ventral fins are also formed. The larvae attained 10.40~10.80 mm in TL, 35 days after hatching, are found to start the bottom-life after having completely formed first dorsal and ventral fins. The larvae reached the juvenile stage at 50~60 days after hatching and attained 15.37~20.25 mm in TL. At this period all scales appeared on the body.

  • PDF

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.