• 제목/요약/키워드: encryption model

검색결과 225건 처리시간 0.025초

효율적인 퍼지 아이디 기반 암호화 방법 (Efficient Fuzzy Identity-Based Encryption Scheme)

  • 이광수;이동훈
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.563-565
    • /
    • 2008
  • In this paper, we construct an efficient fuzzy identity-based encryption scheme in the random oracle model. The fuzzy identity-based encryption is an extension of identity-based encryption schemes where a user's public key is represented as his identity. Our construction requires constant number of bilinear map operations for decryption and the size of private key is small compared with the previous fuzzy identity-based encryption of Sahai-Waters. We also presents that our fuzzy identity-based encryption can be converted to attribute-based encryption schemes.

  • PDF

모바일 클라우드 환경에서 안전한 프록시 재암호화 기반의 데이터 관리 방식 (Secure Data Management based on Proxy Re-Encryption in Mobile Cloud Environment)

  • 송유진;도정민
    • 한국통신학회논문지
    • /
    • 제37권4B호
    • /
    • pp.288-299
    • /
    • 2012
  • 최근 모바일 클라우드 환경에서 공유되는 데이터의 기밀성과 유연성있는 접근제어를 보장하기 위해서 KP-ABE(Key Policy-Attribute Based Encryption)와 PRE(Proxy Re-Encryption)를 활용한 시스템 모델이 제안되었다. 그러나 기존 방식은 철회된 사용자와 클라우드 서버간의 공모 공격으로 데이터 기밀성을 침해하게 된다. 이러한 문제를 해결하기 위해서 제안 방식은 클라우드 서버에 저장되는 데이터 파일(data file)을 분산 저장하여 데이터 기밀성을 보장하고 비밀분산(Secret Sharing)를 통해서 프록시 재암호화키에 대한 변조 공격을 방지한다. 그리고 제안방식을 의료 환경에 적용한 프로토콜 모델을 구성한다.

Efficient Certificate-Based Proxy Re-encryption Scheme for Data Sharing in Public Clouds

  • Lu, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2703-2718
    • /
    • 2015
  • Nowadays, public cloud storage is gaining popularity and a growing number of users are beginning to use the public cloud storage for online data storing and sharing. However, how the encrypted data stored in public clouds can be effectively shared becomes a new challenge. Proxy re-encryption is a public-key primitive that can delegate the decryption right from one user to another. In a proxy re-encryption system, a semi-trusted proxy authorized by a data owner is allowed to transform an encrypted data under the data owner's public key into a re-encrypted data under an authorized recipient's public key without seeing the underlying plaintext. Hence, the paradigm of proxy re-encryption provides a promising solution to effectively share encrypted data. In this paper, we propose a new certificate-based proxy re-encryption scheme for encrypted data sharing in public clouds. In the random oracle model, we formally prove that the proposed scheme achieves chosen-ciphertext security. The simulation results show that it is more efficient than the previous certificate-based proxy re-encryption schemes.

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.

A Secure Cloud Computing System by Using Encryption and Access Control Model

  • Mahmood, Ghassan Sabeeh;Huang, Dong Jun;Jaleel, Baidaa Abdulrahman
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.538-549
    • /
    • 2019
  • Cloud computing is the concept of providing information technology services on the Internet, such as software, hardware, networking, and storage. These services can be accessed anywhere at any time on a pay-per-use basis. However, storing data on servers is a challenging aspect of cloud computing. This paper utilizes cryptography and access control to ensure the confidentiality, integrity, and proper control of access to sensitive data. We propose a model that can protect data in cloud computing. Our model is designed by using an enhanced RSA encryption algorithm and a combination of role-based access control model with extensible access control markup language (XACML) to facilitate security and allow data access. This paper proposes a model that uses cryptography concepts to store data in cloud computing and allows data access through the access control model with minimum time and cost for encryption and decryption.

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.

ID기반 암호시스템을 이용하여 ID기반 동적 임계 암호시스템으로 변환하는 방법 (The Conversion method from ID-based Encryption to ID-based Dynamic Threshold Encryption)

  • 김미령;김효승;손영동;이동훈
    • 정보보호학회논문지
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2012
  • 동적 임계 공개키 암호 시스템(dynamic threshold public-key encryption)이란 시스템을 구축하는 과정에서 전체 사용자들의 집합과 인증된 수신자 집합의 크기, 임계치를 고정값으로 설정하지 않고 유연하게 변경될 수 있는 기능을 제공하는 임계 암호 시스템을 말한다. 이와 관련하여 신원정보를 공개키로 사용하는 ID기반 암호 시스템(identity-based encryption)과 동적 임계 공개키 시스템을 결합하여 ID기반 동적 임계 암호 시스템(identity-based dynamic threshold encryption)을 설계하려는 연구가 이뤄지고 있으며, 최근 2011년 Xing과 Xu은 동적 기능을 제공하는 ID기반 임계 암호기법을 제안하였다. 본 논문에서는 Xing과 Xu가 제안한 ID기반 동적 임계 암호 시스템을 분석하고 구조적으로 문제점이 있음을 보인다. 또한 겹선형 함수를 이용한 ID기반 암호 시스템을 ID기반 동적 임계 암호 시스템으로 변환하는 방법(conversion method)를 제안한다. 마지막으로, 변환하여 설계한 기법이 완전한 풀 모델(full model)로 선택된 평문 공격(chosen plaintext attack)환경에서 안전함을 증명한다.

Vigenere 테이블을 이용한 3단계 다중 알파벳 치환 암호화 모델 (Three Steps Polyalphabetic Substitution Cipher Practice Model using Vigenere Table for Encryption)

  • 응웬 후 호아;당 쿽 짜 빈;김도영;남궁영;노시춘
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.33-39
    • /
    • 2022
  • 최근 정보시스템 인프라에 대한 사이버 공격이 증가하면서 사용자 인증 기능이 무력화되는 현상이 지속적으로 발생하고 있다. 정보시스템에 내재된 보안 취약성은 날로 증가하고 있으며 이에 따라 정보시스템에 암호화 기술을 적용해야 할 필요성이 더욱 증대되고 있다. 본 연구는 초보자가 이해하고 적용하기 쉽지 않은 암호화 알고리즘의 업무현장 적용을 지원하기 위해 대칭키 알고리즘에 사용되는 한 원리인 Substitution Cipher Practice Model을 개발하여 제안한다. 이는 Vigenere Cipher라는알파벳 텍스트를 암호화 프로세스에 활용하는 방법이며 비교적 단순한 형태의 다중 알파벳이 암호화 업무용 프로그램으로 개발이 가능함을 보여준다. 본 연구에서 제안하는 암호화 응용 시스템은 단순한 형태의 다중 알파벳 대체 방법을 활용하여 암호화 테이블 생성, 암호화, 복호화의 3단계를 프레임워크로 통합한 응용 모델을 제시하는 것이다. 제안한 연구는 실험을 위해 통합 프로그램을 코딩하여 테이블 생성, 암호화 및 복호화의 세 단계 테스트를 진행했다. 이 연구 결과는 비교적 간단한 대체방법을 사용한 암호화 복호화가 광역네트워크 환경에서 실무에서 활용 가능함을 보여주고 있다.

A Fully Distributed Secure Approach using Nondeterministic Encryption for Database Security in Cloud

  • Srinu Banothu;A. Govardhan;Karnam Madhavi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.140-150
    • /
    • 2024
  • Database-as-a-Service is one of the prime services provided by Cloud Computing. It provides data storage and management services to individuals, enterprises and organizations on pay and uses basis. In which any enterprise or organization can outsource its databases to the Cloud Service Provider (CSP) and query the data whenever and wherever required through any devices connected to the internet. The advantage of this service is that enterprises or organizations can reduce the cost of establishing and maintaining infrastructure locally. However, there exist some database security, privacychallenges and query performance issues to access data, to overcome these issues, in our recent research, developed a database security model using a deterministic encryption scheme, which improved query execution performance and database security level.As this model is implemented using a deterministic encryption scheme, it may suffer from chosen plain text attack, to overcome this issue. In this paper, we proposed a new model for cloud database security using nondeterministic encryption, order preserving encryption, homomorphic encryptionand database distribution schemes, andour proposed model supports execution of queries with equality check, range condition and aggregate operations on encrypted cloud database without decryption. This model is more secure with optimal query execution performance.

An Effective Encryption Algorithm for 3D Printing Model Based on Discrete Cosine Transform

  • Pham, Ngoc-Giao;Moon, Kwnag-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제21권1호
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we present an effective encryption algorithm for 3D printing models in the frequency domain of discrete cosine transform to prevent illegal copying, access in the secured storage and transmission. Facet data of 3D printing model is extracted to construct a three by three matrix that is then transformed to the frequency domain of discrete cosine transform. The proposed algorithm is based on encrypting the DC coefficients of matrixes of facets in the frequency domain of discrete cosine transform in order to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The proposed algorithm is provide a better method and more security than previous methods.