• Title/Summary/Keyword: emulsion properties

Search Result 653, Processing Time 0.02 seconds

The Additive Effect of Polyoxyethylene Compounds on the Photographic Characters of Photographic Emulsion

  • Youn, Min-Young;Ahn, Hong-Chan;Kang, Tai-Sung
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.45-46
    • /
    • 2000
  • The polyoxyethylene compounds were added into the photographic emulsion during the physical ripening of photo sensitive silver halide crystal in this emulsion. The polyoxyethylene compounds improved the photographic properties of the film to a great extent increasing the photo sensitivity and decreasing the fog density.

  • PDF

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

Studies on Rheological Properties of High Solids Coating Colors (I) - Effect of Rheology Modifiers on Viscoelastic Properties -

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.39-45
    • /
    • 2012
  • For a fundamental study for high concentration pigment coating, the effects of alkali swellable emulsion (ASE) type rheology modifier and surface adsorption emulsion (SAE) type rheology modifier on both the stability and the viscoelastic behavior of a coating color were elucidated. The coating color prepared with SAE type rheology modifier showed superior thermal and mechanical stability than that with ASE type. In the high concentration and high speed coating process, the mechanical stability of a coating color was a key parameter since both impact force and shear force were increased with the increase of coating color concentration and coating speed, respectively.

Retention and Drainage Characteristics with Inverse Emulsion Type C-PAM

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.24-30
    • /
    • 2006
  • This study was performed to characterize inverse emulsion type cationic polyacrylamide (PAM) and to compare with powder and salt dispersion type PAMs as a retention and drainage aid. Salt dispersion type PAM has defects of high amount of salt which increases conductivity of white water, low active polymer contents and relatively worse retention and drainage properties than others because of its low molecular weight. Powder type PAM has benefit of high active polymer contents and good retention and drainage properties, but defects of low dissolution speed and insoluble particle generation were observed. However, inverse emulsion type showed the best retention and drainage aids among them by controlling molecular weight and morphology easily and it had relatively higher active polymer contents and better solubility.

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.

A study of the Emulsifying Properties of Kidney Bean Protein Isolate (분리 강남콩 단백질의 유화특성에 관한 연구)

  • 최희령;손경희;민성희
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 1989
  • This study was carried out in order to study the emulsifying properties of kidney bean protein isolate. Kidney bean protein isolate was tested for the purpose of finding out the effect of pH, addition of NaCl, and heat treatment on the solbulity and emulsion capacity, emulsion stability, surface hydropobicity and emulsion viscosity. The results were summarized as follows. 1 The solubility of kidney bean protein isolate was affected by pH and showed the lowest value at pll 4.5 which is isoelectric point of kidney bean isolate. When the kidney bean protein isolate was heated, the highest value observed at pH 2 and pH 7 was 96.11%, 97.41% respectively. 2. The emulsion capacity of kidney bean protein isolate was not significantly different with each pH. With addition of NaCl, emulsion capacity decreased steadily. When heated thr highest value observed at pH 2 and pH 7 was 82.91 ml oil/100 mg protein ($60^{\circ}C$), 82.08 m1 oil/100 mg protein ($80^{\circ}C$) respectively. 3. The emulsion stability was significantly higher at pH 4.5 than that of pH 2 and pH 7 (p 0.05) When NaCl was added, emulsion stability was generally increased after 2hrs. When heated, the highest value observed at pH 2 and pH 7 was 21.25% ($80^{\circ}C$),23.7%($100^{\circ}C$) respectively after 2hrs. 4. Surface hydrophobicity increased sharply as 0.2 M NaCl was added to pH 4.5. When heated, the surface hydrophobicity increased as the temperature increased. 5. The highest value of emulsion viscosity was observed at pH 4.5 and pH 7 when 0.2 M NaCl was added. Under heat treatment, the highest value was 48,000 cps at pH 4.5 ($40^{\circ}C$). In the case of pH 7, the highest value was 105,000 cpa at $100^{\circ}C$.

  • PDF

THE STABILITY OF ALL-TRANS-RETINOL IN NOVEL LIQUID CRYSTALLINE OW EMULSION

  • Kang, H.H.;Cho, J.C.;Lee, J.H.;Lee, O.S.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.111-115
    • /
    • 1998
  • We investigated the stability of all-trans-retinol on the liquid crystalline O/W emulsion composed of mainly alkyl polyglycerine, alkyl polyglucose and glycerine, and compared the activity of all-trans-retinol in the various forms of liquid crystal. Under certain conditions, novel liquid crystalline gel was formed around oil droplets, and layers of this liquid crystalline gel were very wide and rigid. (SWLC; Super Wide Liquid Crystal) SWLC was very helpful to stabilize retinol in O/W emulsion. After storage at 45 C for 4 weeks, all-trans-retinol in O/W emulsion composed of SWLC retained above 85% of the activity upon HPLC analysis, whereas those within no liquid crystalline emulsion gave 47% and normal liquid crystalline emulsion composed of fatty alcohols gave 40 60%. Retinol in oil phase is nealy insoluble in pure water, but in cosmetic emulsion systems can be slightly solubilized into water because emulsifiers and polyols in emulsion systems function as solubilizers. In this case, water in outer phase acts as a media for oxygen transporation$.$and thus destabilizes retinol. As a result, retinol in O/W emulsion has a tendency to become unstable. SWLC surrounding oil droplet which contains retinol is wide and rigid, therefore reduces contact between inner phase and outer phase To make SWLC, properties of emulsifiers are very important phase transition temperature should be high, and the structure of surfactants should be bulky, and their ratio should be suitable to make rigid and wide liquid crystalline gel layer in order to reduce contact between retinol in inner phase and water in outer phase.

  • PDF

Development of Curcumin with Anti-Oxidation Effect of Water Dispersibility using Multi-Emulsification Technology (멀티 유화 기술 이용 수분산성의 항산화 효능을 함유한 커큐민의 개발)

  • Lee, Kyung-Haeng;Lee, Eun-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.6
    • /
    • pp.561-567
    • /
    • 2021
  • Curcumin is not soluble in water. Therefore, curcumin emulsion that can dissolve well in water were prepared using multi-emulsification technology, and the antioxidant activities and physical properties of emulsion were measured. Although curcumin was not dissolved in water, it was confirmed to be well dispersed in water when prepared in an aqueous dispersion curcumin emulsion. After dissolving curcumin using water and ethanol as solvents, respectively, the DPPH and ABTS radical scavenging abilities of the filtrate and the curcumin emulsion were measured. Because it was not dissolved in water, activities were not shown. However, when curcumin was dissolved in ethanol, the activities increased as the concentration of curcumin increased. On the other hand, when the curcumin emulsion was dissolved in water, it was found to have abilities. The curcumin emulsion was nano-homogenized and the size and distribution of the emulsified spheres were measured. It was confirmed to be nano-sized as it appeared as 9.083 nm/100%. In the results of the DPPH radical and ABTS radical scavenging abilities of curcumin nano-emulsion, it was confirmed that there was no change in the antioxidant abilities. In conclusion, water-dispersible curcumin prepared using multi-emulsification technology, and it was confirmed to exhibit antioxidant activity and emulsion stability.

Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.459-463
    • /
    • 2009
  • In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

Preparation and Characterization of Emulsified Chlorosulfonated Polyethylene Rubber (CSM) (유화 Chlorosulfonated Polyethylene Rubber (CSM)의 제조 및 특성 연구)

  • Choi, Seo-Young;Lee, Eun-Kyoung;Choi, Kyo-Chang
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.12-21
    • /
    • 2005
  • In this work, magnesium carbonate and calcium hydroxide as metallic crosslinking agent were added to chlorosulfonated polyethylene rubber (CSM) emulsion to enhance the mechanical properties of emulsion film such as tensile strength, elongation at break, and tear strength and crosslinking density, thermal features, and surface energy were also investigated. Crosslinking density of the CSM emulsion film with increasing the amount of magnesium carbonate and calcium hydroxide increased, leading to the enhancement of water resistance. It was shown that compared with calcium hydroxide, magnesium carbonate had a little higher crosslinking density and $T_g$ value. The surface energy and mechanical characteristics of the CSM emulsion film, however, showed somewhat different behaviors. The highest surface energy, tensile strength, and tear strength were observed when 0.75% for magnesium carbonate and 1.0% for calcium hydroxide were added respectively. Therefore, it can be concluded that as metallic crosslinking agent to improve water resistance and mechanical properties of the CSM emulsion, magnesium carbonate is more preferable to calcium hydroxide.