• Title/Summary/Keyword: emulsion capacity

Search Result 149, Processing Time 0.03 seconds

Solubility, Emulsion Capacity, and Emulsion Stability of Protein Recovered from Red Crab Processing Water (홍게 가공회수 단백질의 용해도, 유화력 및 안정성)

  • Kim, Yong-Jin;Sin, Tae-Seon;O, Hun-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1996
  • The functional properties of protein recovered from red crab (Chitinonecetes opiiie) processing in water (RCP) were examined and compared with those of soybean protein isolate at pH 2~10 in water and NaCl solu5ion. The solubilities of RCP and SPI were miniumu at pH 4, the isoelectric point and increased significantly at lower or higher than pH 4. Solubilities in NaCl solution for both proteins decreased with incr NaCl concentration increase at all pH ranges. Emulsion capacity for both proteins was also minimum at pH 4 and increased as protein concentration increased from 2 to 6%. Emulsion capacity of RCP was higher than these of SPI at pH 6∼10 and all protein concentrations. Emulsion stability showed a similar trend to that of emulsion capacity. RCP had higher oft absorption capacity and lower water absorption capacity than SPI.

  • PDF

A Comparison Study on Functional Properties of Mungbean Protein and Chemically Modified Mungbean Protein (분리 녹두 단백질과 이를 화학적으로 수식화한 단백질간의 식품학적 기능성 비교)

  • Sohn, Kyung-Hee;Min, Sung-Hee;Park, Hyun-Kyung;Park, Jin
    • Korean journal of food and cookery science
    • /
    • v.7 no.3
    • /
    • pp.53-59
    • /
    • 1991
  • This study was carried out in order to investigate the change of protein functionalities such as foaming and emulsifying properties by succinylation of protein isolates. Succinylated and unsuccinylated munghean protein isolates were tested for finding out the effects of pH, heat treatment and sodium chloride concentration on the solubility, emulsion capacity, emulsion stability, foaming capacity, and foam stability. The results are summarized as follows: 1. Succinylation enhanced the solubility of MPI except at pH 4.5. When heated, succinylation greatly increased the solubility of succinylated MPI above $60^{\circ}C$. With the addition of NaCl, succinylation increased the solubility of MPI at acidic condition. 2. Emulsion capacity of succinylated MPI showed the lowest value at pH 7 and higher values at acidic and alkaine condition. when succinylated MPI was heated, emulsion capacity showed the highest at $80^{\circ}C$. With NaCl was added, emulsion capacity of succinylated MPI lincreased at pH 7, 9 or 11 decreased at pH 3 except addition of 1.0M NaCl. 3. Emulsion stability of MPI and succinylated MPI showed the highest at pH 4.5. Succinylation enhanced the emulsion stability of MPI at acidic condition. 4. The foaming capacity of MPI was increased at pH 3, 7 or 9 by succinylation. 5. When heated, foam stability of MPI and succinylated MPI showed the highest at pH 4.5 and at pH 11, respectively. When heated, both proteins showed the highest stability at $100^{\circ}C$.

  • PDF

Effects of the Types and Concentrations of Sugars on the Physicochemical and Sensory Characteristics of Soy Milks during Storage (당의 종류와 농도가 두유의 저장 중 물리화학적 및 관능적 성질에 미치는 영향)

  • 이정은;이숙영
    • Korean journal of food and cookery science
    • /
    • v.13 no.1
    • /
    • pp.70-77
    • /
    • 1997
  • This study was performed to examine the changes in pH, viscosity, emulsion capacity, emulsion stability, and sensory characteristics during 21 day storage of soy milks prepared by the addition of the different kinds(glucose, fructose, sucrose) and concentrations (5%, 7%, 10%) of sugars. The pH values of all sugar added samples and control were 7.19∼7.40, which belong to the range of good suspension stability. The viscosity values of all sugar added samples were higher than that of control, and those of 7% and 10% fructose added groups and 5% sucrose added group increased during storage. While the emulsion capacity values of all sugar added samples were significantly higher than that of control, those of 7% sugar added groups were the highest. During storage, the emulsion capacity decreased rapidly during the first 7 days, but after then decreased gradually. The emulsion stability values of all sugar added samples were higher than that of control, especially those of all fructose added samples were the highest. The emulsion stability of all sugar added samples increased during the first 7 days, but after then decreased. Sensory evaluations, the scores of sweet taste, roasted nutty taste, color, overall quality of fructose added samples were the highest. According to the above results, the emulsion capacity of 7% sugar added samples were the highest, and emulsion stability and all sensory characteristics of fructose added samples were the best. Therefore, it was thought to be the most desirable to prepare soy milks by the addition of 7% fructose.

  • PDF

Emulsion Properties of Small Red Bean Protein Isolates (분리 팥 단백질의 유화특성에 관한 연구)

  • Kim, Hyon-Jung;Sohn, Kyung-Hee;Park, Hyun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.6 no.4 s.13
    • /
    • pp.9-14
    • /
    • 1990
  • The emlsifying properties of small red bean protein isoates were evaluated through their emulsion capacity and stability of the resulting emulsions. The influence of pH, Sodium Chloride and heat treatment on the efficiency of small red bean protein isolates as emulsifying agents was studied. The surface hydrophobicity (So) of small red bean protein islates also examined. The results were obtained as follows; 1. The emusion capacity of small red bean protein isolates was high at pH 11, low at pH 3 and decreased by heat treament. With addition of NaCl, emulsion capacity decreased steadily and showed lowest value when 0.2M NaCl was added. 2. The emulsion stability at pH 4.5 and heat treatment over $60^{\circ}C$ decreased emulsion stability at pH 4.5. When NaCl was added, emulsion stability was generally increased. 3. The surface hydrophobicity of small red bean protein isolates showed the highest value at pH 3 and lowest at pH 11 and increased as the heating temperature increased When 0.2 M NaCl was added, surface hydrophobicity also increased at pH 4.5.

  • PDF

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

A study of the Emulsifying Properties of Kidney Bean Protein Isolate (분리 강남콩 단백질의 유화특성에 관한 연구)

  • 최희령;손경희;민성희
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 1989
  • This study was carried out in order to study the emulsifying properties of kidney bean protein isolate. Kidney bean protein isolate was tested for the purpose of finding out the effect of pH, addition of NaCl, and heat treatment on the solbulity and emulsion capacity, emulsion stability, surface hydropobicity and emulsion viscosity. The results were summarized as follows. 1 The solubility of kidney bean protein isolate was affected by pH and showed the lowest value at pll 4.5 which is isoelectric point of kidney bean isolate. When the kidney bean protein isolate was heated, the highest value observed at pH 2 and pH 7 was 96.11%, 97.41% respectively. 2. The emulsion capacity of kidney bean protein isolate was not significantly different with each pH. With addition of NaCl, emulsion capacity decreased steadily. When heated thr highest value observed at pH 2 and pH 7 was 82.91 ml oil/100 mg protein ($60^{\circ}C$), 82.08 m1 oil/100 mg protein ($80^{\circ}C$) respectively. 3. The emulsion stability was significantly higher at pH 4.5 than that of pH 2 and pH 7 (p 0.05) When NaCl was added, emulsion stability was generally increased after 2hrs. When heated, the highest value observed at pH 2 and pH 7 was 21.25% ($80^{\circ}C$),23.7%($100^{\circ}C$) respectively after 2hrs. 4. Surface hydrophobicity increased sharply as 0.2 M NaCl was added to pH 4.5. When heated, the surface hydrophobicity increased as the temperature increased. 5. The highest value of emulsion viscosity was observed at pH 4.5 and pH 7 when 0.2 M NaCl was added. Under heat treatment, the highest value was 48,000 cps at pH 4.5 ($40^{\circ}C$). In the case of pH 7, the highest value was 105,000 cpa at $100^{\circ}C$.

  • PDF

A Comparison Study on Functional Properties of Peanut Protein and Chemically Modified Peanut Protein (분리 땅콩 단백질과 화학적으로 수식화한 단백질간의 식품학적 특성 비교)

  • Sohn, Kyung-Hee;Min, Sung-Hee;Park, Hyun-Kyung;Park, Jin
    • Korean journal of food and cookery science
    • /
    • v.7 no.2
    • /
    • pp.97-104
    • /
    • 1991
  • This study was carried out in order to study the protein functionality such as foaming and emulsifying properties by succinylation of peanut protein isolates. Succinylated and unsuccinylated peanut protein isolate was tested for to find out the effect of pH, heat treatment and sodium chloride concentration on the solubility, foam expansion, foam stability, emulsion capacity and emulsion stability. The results are summarized as follows; 1. Succinylation enhanced the solubility of peanut protein isotate (PPI). The solubility of succinylated PPI markedly increased at pH 4.5. When the protein solutions was heated, the solubility of succinylated PPI greatly increased than PPI at pH 3. With addition of NaCl, solubility of succinylated PPI increased at pH 7 and pH 9. 2. The foam expansion of PPI and succinylated PPI on pH was no difference between both proteins. Addition of NaCl and heat treatment caused steeply increased in foam expansion at pH 3. 3. The foam stability of PPI and succinylated PPI showed the lowest value at pH 4.5. When PPI and succinylated PPI was heated, foam stability of two proteins incensed at pH 3 and showed similar aspects between PPI and succinylated PPI. However, at pH 9 stability of succinylated PPI decreased by heat treatment over $60^{\circ}C$. 4. Emulsion capacity of succinylated PPI on pH was markedly increased and showed the highest value at pH 11. At pH 4.5 which is isoelectric point of PPI, emulsion capacity of PPI by succinylation improved than that of PPI. When succinylated PPI was heated, emulsion capacity was greatly increased at pH 2 and pH 7. With NaCl was added, emulsion capacity of succinylated PPI increased than that of PPI. 5. Emulsion stability of PPI and succinylated PPI was affected by pH and showed its highest value at pH 11. At pH 4.5, emulsion stability of succinylated PPI increased than that of PPI. Addition of NaCl and heat treatment caused slightly increased in emulsion stability of succinylated PPI.

  • PDF

Studies on the Preparation and Utilization of Filefish Protein Concentrate (FPC) -II. The Effect of Processing Conditions on the Functional Properties- (말쥐치 농축단백질(濃縮蛋白質)의 제조(製造) 및 이용(利用)에 관(關)한 연구(硏究) -제 2 보 : 제조방법(製造方法)에 의한 기능성(機能性)의 변화(變化)-)

  • Yang, Han-Chul;Lim, Seung-Taik;Son, Heung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.252-261
    • /
    • 1983
  • Isopropyl alcohol extracted filefish protein concentrate (FPC) and NaOH hydrolyzed filefish protein isolate (FPI) were used for the investigation on the effect of processing conditions on the molecular distribution and functional properties. The molecular distribution of FPC on polyacrylamide gel showed a resemblance to that of fish muscle, but that of alkaline hydrolyzed FPI showed the severe degradation of protein. The content of several amino acids in FPI were lower than those of FPC. The pepsin digestibility of the FPC dried at high temperature was relatively high. FPC didn't exhibit a significant difference in nitrogen solubility at the pH range of 3.0-9.0, while FPI showed a wide difference with the pH change. FPI was more suspensible and rehydrated in water than FPC. Although the aeration capacity of FPI was very low, foam viscosity was higher than that of FPC. In contrast with aeration capacity, FPI presented higher emulsion capacity and lower emulsion viscosity than FPC. The size of fat globule in the emulsion of FPC was larger than that of FPI. In general, most functional properties decreased with the increment in drying temperature, except water holding capacity.

  • PDF

The Effect of Molecular Size and Degree of Phosphorylation on the Emulsion Stability of Microcrystalline Chitin (Chitin의 분자량과 Phosphorylation 정도가 Microcrystalline Chitin의 유화안정 능력에 미치는 영향)

  • Lee, Young-Chun;Im, Ji-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1009-1013
    • /
    • 1996
  • This study was carried to investigate the emulsion stability of microcrystalline chitins (MCC) prepared from chitins of different molecular sizes and different degrees of phosphorylation in a model fatty food system. Chitins of low, medium and high molecular size prepared from crabshells were phosphorylated to 30-50% to make MCC. MCC prepared from chitin of medium molecular size revealed a high emulsion stability. The best emulsion stability was observed in MCC prepared from medium size chitin with 40% phosphorylation (M-40-MCC). The fat binding capacity of MCC was not significantly different among the samples. MCC with 50% phosphorylation had more fat binding capacity, ranging from 650-690%. When 2.46% of M-40-MCC was applied to a coconutoil-water system as an emulsifier, emulsion separation was observed from 10 min after emulsification, indicating that it could not be used as a sole emulsifier. When 50% of emulsifier (Span-60 &Tween-60) in a liquid coffee creamer, selected as a model fatty foods, was replaced by M-40-MCC, emulsion stability was as good as control. Consistency of liquid creamer was decreased and L value increased as the amount of MCC repacement increased. A liquid creamer with 50% emulsifier replaced by MCC had sensory characteristics equivalent to control.

  • PDF

Moisturizing Effect in Emulsion Body Cleansing System (유화제형 바디클렌징 시스템에서 보습효과)

  • Shin, Moon-Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.41-45
    • /
    • 2010
  • Emulsion body cleansing systems containing high levels of occlusives have recently been developed such as using insoluble crystalline hydroxy waxes, insoluble crystalline surfactant structures, encapsulated particles and smectite clay. In this study, moisturizing effect of various occlusives such as petrolatum and triglycerides was researched in emulsion body cleansing systems. The experiment shows that petrolatum has less moisturizing capacity in emulsion body cleansing systems than triglycerides. In "leave-on" products such as lotion and cream formulations, the moisturizing capacity of petrolatum is more than that of triglycerides, but in "wash-off" emulsion body cleanser of this research, different results appeared. Emulsion body cleansing systems contained high levels of anionic and amphoteric surfactants, therefore petrolatum has more solubility and less deposited amount into the skin during washing process than triglycerides.