• Title/Summary/Keyword: emulsifying activity

Search Result 112, Processing Time 0.018 seconds

Physiological Characteristics of Biosurfactant-Producting Bacillus subtilis TBM 3101 (Biosurfactant를 생산하는 Bacillus subtilis TBM 3101의 생리학적 특성)

  • Kim, Seon-A;Lee, Young-Guen;Choi, Yong-Lark;Hwang, Cher-Won;Jeong, Yong-Kee;Joo, Woo-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • A biosurfactant-producing strain, Bacillus subtilis TBM 3101 was isolated from the soil sample at Tae-Baek Mountain through an antifungal test and emulsification assessment. The strain was assessed, regarding to the microbial growth, by physical and chemical test, surface tension, emulsification activity and stability. The surface tension of the isolate sharply decreased to the minimum 29mN/m at 48 h growth. Of note, its emulsification was stabilized to the highest degree when tributyrin was utilized as a substrate, indicating that in comparison to a variety of synthetic surfactants, the biosurfactant produced by the isolate was significantly similar to synthetic surfactant, tween 20. In addition, the biosurfactant showed high emulsification activity when soybean oil, crude oil and tetradecane were used as a substrate. Thus, these studies could contribute to the detection and development of biosurfactant beneficial to the environment and humans.

Bioremedation of petrolium pollution (유류오염의 미생물학적 제어)

  • 이상준;차미선;이근희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.02a
    • /
    • pp.14-28
    • /
    • 2001
  • As basic study for purpose bioremedation in oil-contaminated environment, Primarily, we isolated biosurfactant producer- strains utilized of oil-agar plate, and measured surface tension and emulsifying activity. We investigated in oil-contaminated soil and sea water. In this laboratory, Pseudomonas sp. EL-012S strain isolated from oil-contaminated soil was able to product novel biosurfactant under the optimal culture condition. Its condition was n-hexadecane 2.0%, NH$_4$NO$_3$0.4%, Na$_2$HPO$_4$0.6%, KH$_2$PO$_4$0.4%, MgSO$_4$.7$H_2O$ 0.02%, CaCl$_2$.2$H_2O$ 0.001%, FeSO.7$H_2O$ 0.001%, initial pH 7.0 and aeration at 3$0^{\circ}C$, respectively. This biosurfactant was produced in both late-exponential and early-stationary phase. The biosurfactant from Pseudomonas sp. EL-012S was composed of carbohydrate, lipid and protein. The purified-biosurfactant was examined two (biosurfactant type I, II) with the silica gel G60 column chromatography and the purified biosurfactant confirmed thin layer chromatography, high performed liquid chromatography and gas chromatography. The biosurfactant type I involved in carbohydrate-lipid-protein characteristics lowered surface tension of water to 27dyne/cm and interfacial tension 4.5dyne/cm aginst to n-hexadecane and the biosurfactant type B involved in carbohydrate lipid characteristics lowered surface tension of water to 30dyne/cm and interfacial tension 8dyne/cm against to n-hexadecane. Specially type I had the properties such as strong emulsifying activity, emulsion stability, pH-stability, thermo-stability, high cleaning activity and forming ability.

  • PDF

Studies on the characteristics of concentrated soy protein (농축 콩단백질 분리 및 추출에 관한 연구)

  • Cha, Seo Hui;Shin, Kyung-Ok;Han, Kyoung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.459-466
    • /
    • 2020
  • The purpose of this study was to investigate the nutritional characteristics of selected soybeans grown in Korea to isolate concentrated proteins. Examination of the general characteristics revealed that the pH and apparent density of Phaseolus radiatus L. protein and concentrated Vigna angularis protein were significantly higher than those of other concentrated soy proteins. The water absorption capacity was high for concentrated Pisum sativum L. protein, whereas the oil absorption capacity was high for concentrated Glycine max (L.) Merr. protein. The emulsifying activity and emulsifying stability were higher and significantly higher, respectively, for enriched P. radiatus protein. Considering the functional characteristics of concentrated soy protein, its application as a food material in the meat product industry in Korea may be of potential value.

Emulsifying and Gelling Properties of Pork Myofibrillar Protein as Affected by Various NaCl Levels and pH Values

  • Jang, Ho-Sik;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.727-730
    • /
    • 2011
  • The effects of various NaCl levels (0, 0.3, and 0.6 M) and pH values (pH 5.0, 5.5, 6.0, and 6.5) on the emulsifying and gelling properties of pork myofibrillar protein (MP) were assessed. The emulsion stability index (ESI), emulsifying activity index (EAI), and creaming index were measured at a 1:20 ratio of MP to corn oil. The EAI and ESI of pork MP showed maximum values at pHs 6.0 and 6.5 and at 0.3 M NaCl, resulting in better emulsion properties. Additionally, the cooking yield (CY) and gel strength (GS) of emulsified MP gel were measured at an MP: corn oil ratio of 1: 2; GS increased with increasing levels of salt. At 0.6 M NaCl, GS decreased with decreasing pH from 5.5 to 6.5. GS and gelling properties were optimal at pH 5.5 in 0.6 M salt. The highest CY was observed at 0.6 M NaCl, regardless of the pH value. However, increasing pH increased CY at salt levels of 0 and 0.3 M. These results indicate that NaCl and pH profoundly affected the emulsified MP system. Future work will be conducted on the rheological properties of the pork emulsified system as affected by adding non-meat protein.

A Study on the Functional Properties of Camellia(Camellia japonica L.) Seed Protein Isolate (분리 동백단백의 기능적 특성)

  • 강성구
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • This study was carried out to investigate the functional properties such as nitrogen solubility, emulsifying property , foaming capapcity , water and oil absorption of Camellia (Camellia japonica .) seed protein isolate in condition of distilled water and 0.5M NaCl solution at pH 2.0∼10.0. Nitrogen solubility of Camellia protein isolate in distilled water showed the minimum value at pH 4.0 and increased at pH lower or higher than the isoelectric point(pH 4.0). It was 90.0 %at pH 10.0 Nitrogen solubility of 0.5M NaCl solution showed a similar pattern with that of distrille dwater but was higher than that of distilled water except pH 2.0 and pH 10.0. Emulsifying activity of Camellia seed protein islate showed the minimum value at pH 4.0, but was higher at ether value of pH. Emulsifying stability of protein isolate was stable by heat treatment for 30min, at 80℃ and increased in 0.5M NaCl solution more than that of distille dwater. Foaming capacity of Camellia seed protein isolate in distill3ed water showed the minimum value near the isoelectric point, While it changed little at other values of pH. Foaming stability slowly decreased as, but didn't make a significant difference as time was delayed . Oil absorption was 1.4ml per a sample of 1g and water absorption was 0.9ml per a sample of 1g. The former was higher than the latter . The content of total amino acid of Camellia protein isolate was 43.67% and the major total amino acid of Camellia protein isolate was 43.67% and the major total amino acid was in the order of glutamic acid , arginine, aspartic acid, and leucine.

  • PDF

Phosphorylation of silk fibroin and its properties (견 피브로인의 인산화와 그 특성)

  • 문장희;김정호;배도규;신봉섭
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.2
    • /
    • pp.116-124
    • /
    • 2001
  • To improve the functional properties as a food, silk fibroin was phosphorylated with STMP In the phosphorylation reaction of silk fibroin, the degree of phosphorylation was increased with high alkali index and treatment temperature. Depending on treatment time and concentration of STMP it was rapidly increased up to 1hr. and 50%, but slowly above that time and 100%. It was indicated in the results of FT-IR analysis and $\^$31/p NMR spectroscopy of phosphorylated fibroin that it had a close ∝-helix and poly-phosphate structure. The more phosphorylation of fibroin made more turbidity, foam expansion and foam stability, but less solubility. Emulsifying activity was increased up to P100, but slightly decreased above Pl00 and emulsifying stability was constantly increased on the progressing of phosphorylation.

  • PDF

Effect of Succinylation on Functional Properties of Leaf Protein Concentrates (Succinylation이 엽농축단백질(葉濃縮蛋白質)의 기능성(機能性)에 미치는 영향(影響))

  • Cho, Yeong Su;Kim, Jong Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 1983
  • This experiment was carried out to investigate the capability of production of artificial milk for leaf protein concentrate (LPC). Chloroplastic protein and cytoplasmic protein were extracted from leaves of Dystaenia takeshimana Nakai and LPC was extracted from leaves of Italian ryegrass to increase the functional properties of LPC as a level of milk casein. One gram of chloroplastic protein and cytoplasmic protein and 1g of LPC were succinylated by addition of succinic anhydride 0.1, 0.25, and 1g respectively. Their functional properties were investigated in this experiment. The results obtained were summarized as follows: 1. The non-succinylated LPC showed a higher value in bulk density than the chloroplastic protein, the cytoplasmic protein and LPC succinylated by addition of succinic anhydride 0.1, 0.25, and 1g respectively. Nevertheless, succinylation had an enhancing effect as indicated by the rises as the degrees of succinylation was increased. 2. Although solubility of non-succinylated LPC was lower than that of milk casein, succinylation caused an effective increase in the solubility of the protein and LPC. 3. Water absorption and fat absorption of succinylated LPC were twice to eight times higher than those of milk casein. Fat absorption was not influenced to the extent by succinylation as the water absorption. Excessive succinylation resulted in the decrease of both water absorption and fat absorption. 4. Emulsifying activity and emulsion stability were increased in proportion to the succinylated degree of LPC. More than 10% increase in the amount of succinic anhydride resulted in an apparent increase in emulsifying activity and emulsion stability. Besides, the succinylated LPC showed more excellent functional properties in emulsifying activity and emulsion stability than milk.

  • PDF

Analysis of the Plasma Proteins from Bovine and Porcine Blood and Their Emulsifying Activity (소 및 돼지 혈액에서의 혈장단백질 분석 및 이들의 유화능)

  • Yun, Sung-Seob;Lee, Hyeon-Gyu;Song, Eun-Seung;Choi, Yeung-Joon;Juhn, Suk-Lak
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.988-991
    • /
    • 1998
  • Plasma proteins were obtained from bloods of slaughtered bovine and porcine and analyzed by Fast Protein Liquid Chromatography (FPLC). Serum albumin content decreased in the following order: Porcine Plasma Protein (PPP)> Bovine Plasma Protein (BPP)> Whey Protein Concentrate (WPC). Protein contents of BPP, PPP, and WPC determined by Kjeldahl method were 85.79%, 82.30%, and 84.38%, respectively. Compared to WPC, plasma proteins had higher emulsifying activity index (EAI) below 2% protein concentration and slightly lower EAI above 4% protein concentration. Plasma proteins had higher EAI in the acidic pH range and more dependence on NaCl than WPC. Also, EAI of plasma proteins with NaCl was higher in the acidic range than that of WPC. These results indicated that plasma protein can be utilized as a raw material for emulsifier.

  • PDF

Production of Emulsan by Acinetobacter calcoaceticus RAG-1 under Various Culture Modes (여러 배양방법하에서 Acinetobacter calcoaceticus RAG-1에 의한 Emulsan의 생산)

  • 강병철;이필경장호남
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.389-394
    • /
    • 1991
  • Emulsan is an extracellular emulsifying agent produced by the hydrocarbon-degrading Acinetobacter species RAG-1. In this study emulsan production of Acinetobacter calcpaceticus RAG-1 was investigated under various culture modes such as batch, fed-batch, membrane cell recycle, and continuous culture. The productions of emulsan under both ethanol-sufficient fed-batch and membrane cell recycle cultures were all 15.0U/ml, which was 53% increase in emulsan activity compared to that of pH controlled batch culture. Emulsan production was found to be strongly dependent on the residual ethanol concentration. In continuous culture the emulsan productivity increased with dilution rate.

  • PDF

Improvement on the Functional Properties of Gelatin Prepared from the Yellowfin Sole Skin by Precipitation with Ethanol (알코올처리에 의한 각시가자미껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 1994
  • With a view to utilizing effectively fish skin wastes from marine manufactory, a gelatin solution extracted from yellowfin sole skin was fractionated by precipitation with ethanol, and then the functional and physico-chemical properties for the fractionated gelatin were determined. Ethanol was added up to 50% of ethanol content to a gelatin solution extracted from yellowfin sole skin, then the mixture was left to stand at $0^{\circ}C$ for 12 hours. Finally, the precipitates were dried by hot-air ($40^{\circ}C$). The gel strength and melting point of a 10% gel of gelatin prepared from yellowfin sole skin by precipitation with ethanol has 322.4g and $23.3^{\circ}C$, respectively. The physico-chemical properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol treatment. Besides, the functional properties of the ethanol treated gelatin were lower in solubility and higher in water holding capacity, oil binding capacity, emulsifying activity, emulsifying stability, foam expansion and foam stability than those of pork skin gelatin sold on market as well as gelatin prepared without ethanol treatment. It may be concluded, from these results, that the fish skin gelatin prepared by precipitation with ethanol can be effectively utilized as a human food by improving the functional properties.

  • PDF