• Title/Summary/Keyword: emulsifying activity

Search Result 112, Processing Time 0.023 seconds

Acinetobacter sp. BE-254에 의한 유화제의 생산

  • Kim, Soon-Han;Lim, Ee-Jong;Choi, Kyung-Sook;Jeong, Yong-Kee;Jang, Kyung-Lib;Lee, Tae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.206-212
    • /
    • 1996
  • The strain producing bioemulsifier was isolated from soil samples. The isolated strain was identified as the genus Acinetobacter through its morphological, cultural and physiological characteristics. The highest emulsification activity and stability by Acinetobacter sp. BE-254 was observed after 5 days of cultivation in the culture medium containing n-hexadecane 4%, NaNO$_{3}$ 0.2%, KH$_{2}$PO$_{4}$ 0.01%, MgSO$_{4}$-7H$_{2}$O 0.01%, CaCl$_{2}$ 0.01%, and yeast extract 0.01%. The optimum pH and temperature for bioemulsifier production were pH 7.0 and 30$\circ$C, respectively. Furthermore the most of bioemulsifier was produced during the exponential growth phase, and this suggested that the bioemulsifier production was growth-associated. The bioemulsifier showed good emulsification activity on various emulsifying substrates such as hydrocarbons, edible oils, and petroleum fractions.

  • PDF

Rapid Formation of biologically Active Neoglycoprotein from Lysozyme and Xyloglucan Hydrolysates through Naturally Occurring Maillard Reaction

  • Soichiro Nakamura;Masayoshi Saito;Tetsuhisa Goto;Hiroki Seaki;Masahiro Ogawa;Masayuki Gotoh;Yasuhide Gohya;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.2
    • /
    • pp.65-69
    • /
    • 2000
  • Hen egg-white lysozyme was conjugated with 7~9 mers xyloglucan hydrolysates(MW-1,400) at 6$0^{\circ}C$ and 79% relative humidity for 3 days. SDS-PAGE showed that the conjugation between lysozyme and the oligosaccharide began from 1-day incubation, and three molecules of carbohydrate chains were attached to a protein molecule after 30day incubation. The enzymatic activity of lysozyme was totally conserved in the neoglycoprotein, when measured by using glycol chitin as substrate. Besides, the emulsifying properties of lysozyme were vastly improved by the conjugation with the oligosaccharide, in which emulsifying activity of the neoglycoprotein was five times higher than that of native one.

  • PDF

Functional Properties of Maillard Conjugates Made from Whey Protein Isolate and Inulin (분리유청단백질-이눌린 유래 마이야르 공액체의 기능적 특성 연구)

  • Kim, Yeon-Woo;Lee, Se-Hee;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.143-150
    • /
    • 2022
  • Maillard conjugates are formed by covalent bonds between proteins and polysaccharides. Understanding the functional properties of Maillard conjugates, including emulsifying and antioxidant properties, can be crucial when Maillard conjugates are used in processed foods. This study aimed to manufacture whey protein isolate (WPI)/Inulin Maillard conjugates and investigate how manufacturing variables including heating temperature and pH affect the functional properties of Maillard conjugates. The surface properties, emulsifying properties, and antioxidant properties of Maillard conjugates were assessed by varying heating temperature and pH. The grafting degree of WPI/Inulin Maillard conjugates increased with increasing pH and heating temperature, indicating enhanced conjugation efficiency. Surface hydrophobicity, emulsifying properties (including emulsifying activity index and emulsifying stability index), and ABTS radical scavenging ability of WPI/Inulin Maillard conjugates increased as pH and heating temperature were increased. In conclusion, WPI/Inulin Maillard conjugates were successfully manufactured, and pH and heating temperature were critical factors in enhancing Maillard conjugate functional properties.

Improvement of Rheological and Functional Properties of Salmon FPC by Enzymatic Partial Hydrolysis 2. Rheological and functional properties of salmon FPC hydrolysates

  • LEE Jong-Ho;LEE Keun-Tai;PARK Seong-Min;PARK Chan-kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.956-963
    • /
    • 1997
  • To enhance application of FPC in food industry, salmon FPC hydrolysates were produced and their functional properties were investigated. Hydrolysates of salmon FPC showed high solubilities ranged from approximately $80\~95\%$. Emulsifying activity index (EAI) values of hydrolysates were higher than that of egg white, however sugar ester showed the highest EAI value of 32.5. Though sugar ester had the best emulsifying stability value $({\Delta}EAI)$ of 9.65, hydrolysates showed better ${\Delta}EAI$ value than that of egg white. Foam Activity of hydrolysates was predominantly better than those of controls and also foam stability value showed similiar trend. Osmolality of hydrolysates was increased with the increase of degree of hydrolysis (DH) and concentration of protein, but it showed very lower osmolality than that of NaCl. Flow property of hydrolysates showed different upward-downward curves, and hysteresis loop increased with the increase of DH. ACE inhibitory activity showed similiar value ranged from $21.1\~24\%$ at all DH values.

  • PDF

A Trial for Utilizing Flounder Skin Gelatin as an Emulsifier through Enzymatic Modification (가자미피 젤라틴의 효소적 수식에 의한 유화제의 시제)

  • KIM Se-Kwon;JEON You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.345-355
    • /
    • 1991
  • In order to effectively utilize the by-products of sea-food, the utilization of enzyme-modified flounder(Limanda aspera) skin gelatin as an emulsifier was investigated. In the experiment, the gelatin was extracted from the flounder skin with the heat-treatment at $60^{\circ}C$ and in pH 5.0 for 3 hrs with four volumes of distilled water and emulsifiers were enzymatically modified L-leucine alkyl esters$(L-leucine-OC_n$ : n= 2, 4, 6, 8 and 10) to the gelatin$(EMFSG-C_2,\;EMFSG-C_4,\;EMFSG-C_6,\;EMFSG-C_8,\;EMFSG-C_{10})$ for improving the functional properties such as emulsifying activity, emulsifying viscosity, whippability, electric conductivity, critical micelle concentration and interface tension, etc. Also, the functional properties of the L-leucine alkyl ester modified gelatins were compared with those of Tween-60 as reference. Molecular weights of the enzymatically modified flounder skin gelatin(EMFSG) were 20.5kDa. in $EMFSG-C_2.\;19.5 kDa.\;in\;EMFSG-C_4\;and\;16.5kDa.\;in\;EMFSG-C_6,\;EMFSG-C_8$ and $EMFSG-C_{10}$. respectively. Emulsifying activity and emulsifying viscosity in the modified gelatins were risen with increase of carbon number of the introduced L-leucine alkyl esters. Among the modified gelatins, $EMFSG-C_6$ exhibited the highest emulsifying stability and foaming stability, whereas $EMFSG-C_8$ showed the highest whippability. The electric conductivities of the all $EMFSG-C_n$ were linearly risen to critical micelle concentration(CMC) , therefore $EMFSG-C_{10}$ exhibited the lowest CMC value and interface tension, and dense particles in the microscopic observation. In conclusion, the best quality in functional properties was assured on $EMFSG-C_{10}$.

  • PDF

Characterization of Diesel Oil-Degrading Bacteria (디젤유 분해균주의 특성 및 토양배양)

  • 안민정;한윤전;임현섭;최기현;권오범;정병철
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • Diesel oil-degrading bacterial strains were isolated from diesel oil contaminated soil and called HS series (HS1, HS2 and HS3). These strains were identified as Acinetobacter sp. (HS1) and Pseudomonas sp. (HS2 and HS3) based on Biolog test, cellular fatty acid composition, and 16S rDNA sequence analysis. These strains were coltivated in liquid minimal media containing 2% diesel oil, and diesel oil-degrading activity was measured. As result, all strains degraded over 70% of total diesel oil. But PAH (polycyclic aromatic hydrocarbon)- and pris- tane-degrading rate of these strain was below 20% of total PAH and pristane. The HS 1 strain showed highest hydrophobicity and low emulsifying activity among the experimental strains and high diesel oil-degrading activity. From the above-mentioned result, microcosm experiment was performed with the HS1 strain. The HS1 strain showed a degrading activity of over 80% of total diesel oil in microcosm test. And microbial activity was correlated to diesel oil-degrading activity. Therefore, it is suggested that the HS1 strains could be effectively used for the bioremediation for diesel oil.

Isolation and Characteristics of Biosurfactant Producing Bacterium, Bacillus sp. TBM 911-5 (Biosurfactant 생산균주 Bacillus sp. TBM 911-5의 분리 및 특성)

  • 김선희;정연주;이상철;유주순;주우홍;정수열;최시림;최용락
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.320-324
    • /
    • 2004
  • The objective of this study was investigate the characteristic of biosurfactant produced from the isolated strain. The strain was isolated from soil samples and identified as Bacillus sp. TBM 911-5 by physiological characteristics and the partial nucleotide sequence analysis of 16S rDNA. We measured the surface tension every 6 hours for 80 hours. The surface tension of the culture filtrate of Bacillus sp. TBM 911-5 was decreased to 29 mN/m. Biosurfactant concentration was determined by diluting the culture filtrate until the critical micelle concentration (CMC). The biosurfactant emulsified hydrocarbons, vegetable oil and crude oil. Using soybean oil as substrate, the maximum emulsification activity and stability was obtained from the biosurfactant. The biosurfactant produced from Bacillus sp. TBM 911-5 had strong properties as an emulsifying agent and an emulsion-stabilizing agent.

Influences of Ingredients and Melting Temperatures on the Physicochemical Properties of Process Cheese (첨가물질 및 용융온도가 가공치즈의 이화학적 특성에 미치는 영향)

  • Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.710-713
    • /
    • 1989
  • Process cheeses were made in a laboratory with natural cheese, water, butter, and emulsifying salts varying in quantity and temperature. With the emulsifying salts, the hardness of process cheese varied from 286 to 580g, the pH values 5.1-5.9 and the solid content 56.8-63.7%. The water activity measured 0.96-0.98, the crude protein content 27.1-27.7%, the crude fat content 58.3-59.9% and the ratio of protein to fat 45.3-47.5%. The various properties of samples showed no natable difference. Increasing the water addition, the hardness and the ratio of the protein to fat decreased, while both the pH values and the water activity increased. With increasing the melting temperatures from 75 to 80, 85, 90 and $95^{\circ}C$. The other indices showed no remarkable differences among the samples.

  • PDF

Physicochemical Properties of the Exopolysaccharides Produced by Marine Bacterium Zoogloea sp. KCCM10036

  • Lim, Dong-Jung;Kim, Jong-Deog;Kim, Min-Yong;Yoo, Sang-Ho;Kong, Jai-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.979-984
    • /
    • 2007
  • The physicochemical properties of the exopolysaccharide (EPS) produced by marine bacterium Zoogloea sp. KCCM10036 were investigated. Two types of isolated EPSs were shown to have average relative molecular masses $(M_r)\;of\;4.07{\times}10^6$ of CBP (cell-bound polysaccharide) and $3.43{\times}10^6$ of WSP (water-soluble polysaccharide), respectively. When the CBP was utilized as an emulsifier, it stabilized the emulsifier, for up to 148 h. Compared with other commercially available hydrocolloids such as xanthan gum, the Tween series, and Triton, the CBP showed much better emulsifying capability on a water-in-oil system. Phase separation occurred in the Tween series after 24 h, whereas the emulsion was better stabilized by the CBP. The CBP thus has potential as an emulsifying agent in commercial emulsions. The flocculating activity was also greatest at 0.01% (w/v) and decreased at higher concentrations than the optimized concentration of the WSP and CBP. The results also showed that both types of expolysaccharides from Zoogloea sp. had excellent flocculating activity.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF