• Title/Summary/Keyword: emulsification stability

Search Result 120, Processing Time 0.024 seconds

Preparation of Natural Sunscreen Cream Using Refined Sea Buckthorn Oil (정제된 시벅턴오일을 이용한 천연 자외선차단 크림의 제조)

  • Dong Hwan Kim;Zhengyuan Ping;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.329-334
    • /
    • 2024
  • To improve the UV absorbance and emulsion stability of sunscreen creams prepared using refined seabuckton oil, experimental conditions were designed utilizing the central composite design model-response surface methodology (CCD-RSM). The amount of surfactant, emulsification time, and thickener amount were chosen as independent variables, and the experiment was carried out after the reaction values of ESI, MDS, and UV absorbance at 290 nm were determined. The main effect and interaction effect, which have the most influence on the response value, were analyzed through the F-value and P-value of the regression equation coefficient calculated through RSM, and the statistical significance of the coefficient was evaluated through the P-value. The optimal emulsification conditions using RSM were calculated as follows: amount of surfactant (4.39 wt%), emulsification time (25.42 min), and amount of thickener (1.24 wt%). At these conditions, the reaction value was calculated as ESI (98.5%), MDS (32.9 nm), and UV absorbance (2.73). As a result of conducting an actual experiment under the calculated optimal conditions, the average error rate was measured as ± 2.7%

Purification and Characterization of Bioemulsifier Produced by Acinetobacter sp. BE-254

  • Kim, Soon-Han;Lee, Jae-Dong;Kim, Boo-Chul;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.184-188
    • /
    • 1996
  • The Acinetobacter sp. BE-254 isolated from soil sources produced a bioemulsifier in the medium supplemented with n-hexadecane. This bioemulsifier was purified by the procedures of fractionation (ammonium sulfate and chilled acetone), extraction by hexane, and column chromatography on silica gel 60. The results from various color reactions indicated that the bioemulsifier was a glycolipid. The purified emulsifier was very stable at pHs ranging from 4 to 10 and under heat treatment at $100^{\circ}C$ for 30 min. Emulsification activity was also hardly influenced by pH. The critical micelle concentration (CMC) and surface tension at the point ($\gamma_{cmc}$) of the bioemulsifier were approximately 35 mg/l and 30 mN/m, respectively. The bioemulsifier showed a fairly good emulsification activity and stability in comparison with other commercial emulsifiers in the basic formula composed of emulsifier, oil, and water.

  • PDF

Emulsification Stability of Oleoresing Red Pepper Changes in Antioxidant Activity during Thermal Cooking (고추 Oleoresin의 유화안정성 및 가열 조리중의 항산화활성 변화)

  • 최옥수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.1
    • /
    • pp.104-109
    • /
    • 1996
  • 고추의 효능을 높이기 위한 방법의 하나로 향신성 분을 보유하면서 자기저자이 가능한 oleoresin을 추출하여 유화제로 수용성을 부여시킨 후, 이때의 유화안 정성과 고온에서 조리를 하였을 때 고추 oleoresin의 항산화 활성을 검토하였다. 100mesh로 분쇄한 고추에 증류수에 가하여 감압증류시켜 정유성분을 추출하고, 잔사에 에틸 알코올을 가하여 $25^{\circ}C에서$ 3시간 진탕 추출한 후 여과, 농축시켜 정유성분과 합하였다. 여기에 물과 유화제 (PGDR)를 첨가, 유화시켜 고추 oleoresin으로 하였다. $60^{\circ}C에서$ 24시간 방치했을때의 enulsion 생성율은 PGDR을 4% 첨가한 경우가 94.5%로 가장 높았고, 또한 100분간 원심분리(200$\times$g) 시킨 후에도 emulsion 잔존율은 80%정도로서 유화안전성이 가장 좋았다. 고추 oleoresin의 항산화 활성은 가열조리 온도 100$\times$의 경우 BHA의 효과 만큼은 미치지 못하나 상당한 항상화성을 나타내었고, 온도 $150^{\circ}C의$ 경우는 BHA 첨가와 마찬가지로 항산화성 효과를 인정하기 어려웠다.

  • PDF

Acinetobacter sp. BE-254에 의한 유화제의 생산

  • Kim, Soon-Han;Lim, Ee-Jong;Choi, Kyung-Sook;Jeong, Yong-Kee;Jang, Kyung-Lib;Lee, Tae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.206-212
    • /
    • 1996
  • The strain producing bioemulsifier was isolated from soil samples. The isolated strain was identified as the genus Acinetobacter through its morphological, cultural and physiological characteristics. The highest emulsification activity and stability by Acinetobacter sp. BE-254 was observed after 5 days of cultivation in the culture medium containing n-hexadecane 4%, NaNO$_{3}$ 0.2%, KH$_{2}$PO$_{4}$ 0.01%, MgSO$_{4}$-7H$_{2}$O 0.01%, CaCl$_{2}$ 0.01%, and yeast extract 0.01%. The optimum pH and temperature for bioemulsifier production were pH 7.0 and 30$\circ$C, respectively. Furthermore the most of bioemulsifier was produced during the exponential growth phase, and this suggested that the bioemulsifier production was growth-associated. The bioemulsifier showed good emulsification activity on various emulsifying substrates such as hydrocarbons, edible oils, and petroleum fractions.

  • PDF

Effect of Polymers to Nano-emulsion Stability (나노에멀젼 안정성에 대한 폴리머의 영향)

  • Cho, Wan-Goo;Kim, Eun-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.339-347
    • /
    • 2013
  • Nano-emulsions are submicron sized emulsions that are under extensive investigation as drug carriers for improving the delivery of therapeutic agents. The aim of this research is to investigate the stability of nano-emulsions containing polymers. Nano-emulsions containing high concentrations of Carbopol 941, Aristoflex AVC, Aronbis M, Permulen TR 2 and Aculyn 44 were unstable compared with macroemulsions with polymers. The size of emulsion droplet manufactured by adding polymer before emulsification were larger than that of emulsion manufactured by adding polymer after the emulsification. The stability of nano-emulsion containing a low concentration of polymer was also decreased, however the effect was lower than that in the high concentration of polymer. Under similar viscosity of polymer, the sequence of unstability was Aristoflex AVC < Carbopol 941 < Permulen TR2 < Carbopol 941 + Aculyn 44 < Aronbis M.

A Study on the Formation of a W/O/W Multiple Emulsion by Polyglyceryl-10 Stearate (Polyglyceryl-10 Stearate를 이용한 W/O/W 다중 에멀젼의 제조에 관한 연구)

  • Yoo, Jung Min;Choi, Se Bum;Kim, Kyung Min;Kim, Seong Ho;Lee, Chung Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.237-246
    • /
    • 2014
  • Multiple emulsions, called multiphase emulsions, include water-in-oil-in-water (W/O/W) type and oil-in-water-in-oil (O/W/O) type emulsions. In cosmetic industry, they are used to stabilize active ingredients but the applicability of the multiple emulsions is limited because of low stability and difficulty of manufacturing. In this study, we investigated a two-step emulsification process for a W/O/W type emulsion. We also investigated the change of stability using different emulsifiers and oil polarity. The results suggested that polyglyceryl-10 stearate, as a main emulsifier, played an important role in the stability and the formation of the multiple emulsions.

Optimization of the process conditions for the emulsification of rice bran oil using response surface methodology (반응표면분석법을 이용한 현미유 유화 제조공정 최적화)

  • Baek, Jin Woo;Lee, Kwang Yeon;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.531-536
    • /
    • 2019
  • In this study, the optimization of the manufacturing process for the oil-in-water emulsification of rice bran oil was performed by response surface methodology (RSM) using varying amounts of the emulsifier (0.05-0.25%), varying rotation speeds of the homomixer (4,000-8,000 rpm), and varying water to oil ratios (0.8-1.6%) as independent variables, and the emulsion stability index (ESI) as the dependent variable. The optimization conditions predicted by the RSM model were 0.2%g of the total amount of the rice bran oil emulsion, emulsified at the homomixer rotation speed of 6,700 rpm using a water to oil ratio of 1:3. The ESI of the rice bran oil emulsion prepared under the optimized conditions was 95.7%, which was similar to the predicted value of 94.4% obtained by the RSM model. The transmission stability and the backscattering values were found to agree with each other over time and the turbiscan stability index was less than 0.7, indicating that the aggregation and upper floatation were less while the dispersion stability was maintained.

Preparation of Cosmeceuticals Containing Wheat Sprout Extracts: Optimization of Emulsion Stability Using CCD-RSM (밀싹 추출물이 함유된 Cosmeceuticals의 제조: CCD-RSM을 이용한 유화안정성 최적화)

  • Jang, Hyun Sik;Ma, Xixiang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.320-325
    • /
    • 2021
  • In this study, an optimization for the production of water emulsion was designed by adding an extract of wheat sprout, which is known to contain a large amount of antioxidants. The central composite design of reaction surface analysis method (CCD-RSM) was used for the optimization process. The amount of emulsifier, emulsification time, and added amount of wheat sprout extract were selected as independent variables based on our preliminary experiments. The mean droplet size (MDS), viscosity, and emulsion stability index (ESI) were set as the responses to evaluate the stability of the emulsion. For each independent variable, the P-value and coefficient of determination were evaluated to verify the reliability of the experiments. From the result of CCD-RSM, optimum conditions for the emulsification were determined as 23.6 min, 7.7 wt.%, and 3.9 wt.% for the emulsification time, amount of emulsifier, and amount of sprout, respectively. From the optimized condition obtained, MDS, viscosity, and ESI after 7 days from reaction were estimated as 252.3 nm, 616.7 cP, and 88.7%, respectively. The overall satisfaction was 0.9137, which supported the validity of the experiments, and the error rate was measured at 0.5% or less by advancing the experiments. Therefore, an optimized process for producing an emulsion by adding the malt extract was designed by the CCD-RSM.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

An Estimation on the Stability of W/O Type Emulsified Fuel Using by Capacitance Sensor (정전용량센서를 이용한 W/O형 유화연료의 안정성 평가)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • We estimated on the stability of W/O type emulsified fuel using by capacitance sensor, so it concluded the following conclusions. For the first 24 hours, prepared emulsified fuel reveals phase separation ratio of 5%, maintains stable status which verifies the stability of emulsified fuel. Adding more water increases the phase separation ratio rapidly, and adding more surfactant displays stable emulsification. Adding water causes larger size of water droplet diameter, and adding surfactant mixture causes smaller size of water droplet diameter. In conclusion, the size of W/O type emulsified fuel water droplet diameter is directly related to the volume of surfactant, and density of water droplet diameter changes thedistribution according to water contents.