• Title/Summary/Keyword: emperature environment

Search Result 2, Processing Time 0.017 seconds

Simultaneous Heating and Cooling Multi-Air Conditioning System for Agricultural Products Management (농수산물 관리를 위한 냉난방 동시형 멀티 에어컨 시스템)

  • Shin, Jin-Seob;Hong, Ji-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.65-70
    • /
    • 2020
  • In this paper, to establish a high-efficiency air-conditioning and heating system, we developed a simultaneous air-conditioning and heating system that can do both air-conditioning and heating at the same time. It was applied to hybrid plant plants to enable automation of complex farms. For this purpose, the heat exchanger, which functions as a condenser during heating, was required to function as an evaporator during cooling so that air conditioning and heating could be implemented simultaneously. For experiments, the simultaneous air conditioning system for heating and cooling was produced and applied to the plant factories in the farms so that plants could be grown, stored, and dried. As a result, a single system was able to control the temperature environment of agricultural products with an energy-saving system that simultaneously resolves heating and cooling. Therefore, efficient crop management was possible by implementing an air conditioning system that did not require installing air conditioners and boilers at the same time.

Optimization of Growth Environment in the Enclosed Plant Production System Using Photosynthesis Efficiency Model (광합성효율 모델을 이용한 밀폐형 식물 생산시스템의 재배환경 최적화)

  • Kim Keesung;Kim Moon Ki;Nam Sang Woon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • This study was aimed to assess the effects of microclimate factors on lettuce chlorophyll fluorescent responses and to develop an environment control system for plant growth by adopting a simple genetic algorithm. The photosynthetic responses measurements were repeated by changing one factor among six climatic factors at a time. The maximum Fv'/Fm' resulted when the ambient temperature was $21^{\circ}C,\;CO_2$ concentration range of 1,200 to 1,400 ppm, relative humidity of $68\%$, air current speed of $1.4m{\cdot}s^{-1}$, and the temperature of nutrient solution of $20^{\circ}C$. In PPF greater than $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, Fv'/Fm' values were decreased. To estimate the effects of combined microclimate factors on plant growth, a photosynthesis efficiency model was developed using principle component analysis for six microclimate factors. Predicted Fv'/Fm' values showed a good agreement to measured ones with an average error of $2.5\%$. In this study, a simple genetic algorithm was applied to the photosynthesis efficiency model for optimal environmental condition for lettuce growth. Air emperature of $22^{\circ}C$, root zone temperature of $19^{\circ}C,\;CO_2$ concentration of 1,400 ppm, air current speed of $1.0m{\cdot}s^{-1}$, PPF of $430{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and relative humidity of $65\%$ were obtained. It is feasible to control plant environment optimally in response to microclimate changes by using photosynthesis efficiency model combined with genetic algorithm.