• Title/Summary/Keyword: emissive

Search Result 190, Processing Time 0.033 seconds

Synthesis and Characterization of 1,2,4-Oxadiazole-Based Deep-Blue and Blue Color Emitting Polymers

  • Agneeswari, Rajalingam;Tamilavan, Vellaiappillai;Hyun, Myung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.513-517
    • /
    • 2014
  • Two donor-acceptor-donor monomers such as 3,5-bis(4-bromophenyl)-1,2,4-oxadiazole (BOB) and 3,5-bis(5-bromothiophen-2-yl)-1,2,4-oxadiazole (TOT) incorporating electron transporting and hole blocking 1,2,4-oxadiazloe moiety were copolymerized with light emitting fluorene derivative via Suzuki polycondensation to afford two new polymers, PFBOB and PFTOT, respectively. The optical studies for polymers PFBOB and PFTOT revealed that the band gaps are 3.10 eV and 2.72 eV, respectively, and polymer PFBOB exhibited a deep-blue emission while polymer PFTOT showed blue emission in chloroform and as thin film. The photoluminescence quantum efficiencies (${\Phi}_f$) of polymers PFBOB and PFTOT in chloroform calculated against highly blue emitting 9,10-diphenylanthracene (DPA, ${\Phi}_f=0.90$) were 1.00 and 0.44, respectively.

Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.642-646
    • /
    • 2009
  • Highly efficient white phosphorescent organic light-emitting diodes with a mixed-host structure are developed and the device characteristics are studied. The introduction of a hole-transport-type host (N, N'-dicarbazolyl-3-3-benzen (mCP)) into an electron-transport-type host (m-bis-(triphenylsilyl)benzene (UGH3)) as a mixed-host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed-host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed-host structure device shows over 30% enhanced performance compared with a single-host structure device at a luminance of 10,000 $cd/m^2$ without any change in the electroluminescence spectra.

Residual gas analysis of small cavity for emissive flat panel display (미소체적을 갖는 평판표시소자용 패널내부의 잔류가스 분석)

  • 조영래;오재열;최정옥;김봉철;이병교;이진호;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The total pressure and partial pressure of small cavity for flat panel display have been successfully measured by using an ultra-high vacuum chamber with mass spectrometer. The total pressure in the panel was in the range of $10^{-6}$ Torr and the major partial pressure affecting increase in total pressure were those of Ar, $CH_4$and He. The baking temperature during evacuation process was very important for high-vacuum package, the total pressure and partial pressure of $CH_4$ were decreased as the increase of baking temperature.

  • PDF

Properties of color purity as white OLED based on $Zn(HPB)_2$ as blue emitting layer ($Zn(HPB)_2$를 블루 발광층으로 이용한 White OLED의 색순도 특성)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Kim, Doo-Seok;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.89-90
    • /
    • 2006
  • We synthesized emissive materiaJs, nameJy $Zn(HPB)_2$. The fundamentaJ structures of the OLEDs were ITO / NPB (40 nm) $Zn(HPB)_2$ (40 nm) / $Alq_3$:DCJTB (20, 30, or 40 nm) / LiF / AI. We varied the thickness of $Alq_3$:DCJTB from 20 nm to 40nm. We measured current density-voJtage and luminance-voJtage characteristics at room temperature. When the thickness of the Alq3:DCJTB layer was 40 nm, white emission is achieved. The CIE coordinates are (0.32, 0.33) at an applied voltage of 14V.

  • PDF

Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes using a mixed host structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Jun-Yeob;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.192-195
    • /
    • 2009
  • We developed highly efficient blue PHOLEDs with reduced roll-off by using a mixed host structure. The balanced charge carrier injection and the distributed recombination zone within emissive layer resulted in a highly stable efficiency roll-off with quantum efficiencies of 20.1 and 18.1 % at a luminance of 1000 and 10000 cd/$m^2$.

  • PDF

Emitting Properties in Poly(3-hexylthiophene) by Heat treatment (열처리한 poly(3-hexylthiophene)의 발광특성)

  • 김대중;김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.137-140
    • /
    • 2001
  • To improve structural properties and induce higher conductivity, we have annealed emitting layer, The temperature condition was investigated by various experiment. To observe the surface morphology of emitting layer, measured the AFM and the X-ray diffraction pattern of P3HT film is shown. It is move to slightly low angles and diffraction peaks also become much sharper. After annealing of emitting layer, EL intensity and Voltage-current-luminance curve is better as compared with untreated. But PL intensity was decreased. It is known that by emission principal. After annealing of emitting layer, EL devices enhances the interface adhesion between the emissive polymer and Indium-tin-oxide electrode, which takes a critical role to improve the emitting properties of EL devices.

  • PDF

Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes(OLEDs) (온도 변화에 따른 유기 전기 발광 소자의 전기적 특성)

  • 이호식;정택균;김상걸;정동회;장경욱;이원재;김태완;이준웅;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.370-373
    • /
    • 2001
  • Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes (OLEDs) were studied. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as a hole transport and trois(8-hydroxyquinoline) aluminum(Alq$_3$) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs was interpreted in terms of tunneling and trap-filled limited current.

  • PDF

Electrical Properties of Organic Light-Emitting Diode depending on Varied Temperature (온도변화에 따른 유기 발광 다이오드의 전기적 특성)

  • Lee, D.K.;Oh, Y.C.;Cho, C.N.;Kim, J.S.;Shin, C.G.;Park, G.H.;Lee, S.I.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.492-493
    • /
    • 2007
  • We have investigated Electrical Properties of Organic Light-Emitting Diode depending on Varied Temperature using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the electrical properties of organic light emitting diodes by impedance characteristics of ITO/$Alq_3$/Al. Impedance characteristics was measured complex impedance Z and phase e in the frequency range of 40 Hz to $10^7\;Hz$. From these analyses, we are able to interpret electrical Properties of OLED depending on temperature.

  • PDF

Study on the Mechanism and Characteristics of OLED using $Alq_3$ ($Alq_3$를 이용한 OLED 소자의 메커니즘 특성 연구)

  • Lee, Ho-Shik;Yang, Seung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.507-508
    • /
    • 2007
  • Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes(OLEDs) were studied. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as a hole transport and tris(8-hydroxyquinoline) aluminum($Alq_3$) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs was interpreted in terms of tunneling and trap-filled limited current.

  • PDF

Electrical and Optical properties of Xe EEFL by mixed gas (Xe EEFL의 혼합가스에 따른 전기 광학적 특성)

  • Kim, Nam-Goon;Lee, Seong-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1568-1569
    • /
    • 2007
  • TFT-LCD used in display area is not a light-emissive device itself but TFT-LCD can overcome through the employ of the backlight unit (BLU). BLU is very important device in TFT-LCD system. However, the old-fashion BLU of CCFL type is crucible to the health due to the contained material, mercury (Hg). Moreover, strong temperature dependency of lamp employed with Hg becomes the other disadvantage in practical usage. To solve these problems, Hg-Free lamp with strong thermal resistance property is required to displace the Hg lamp. We studied optical and electrical properties of Xe-Ne-He mixed gas that is dependent on change of mixed ratio and pressure. In our results, the designed lamp without the phosphorescent material has the lowest firing voltage at xe 50%(Ne:He=9:1).

  • PDF