• Title/Summary/Keyword: emissive

Search Result 190, Processing Time 0.033 seconds

Characterization of structural and field-emissive properties of diamond films in terms of growth conditions and additive gases (증착변수 및 첨가가스에 따른 다이아몬드 박막의 구조적 물성 및 전계방출 특성의 변화 분석)

  • Park, Jae-Hyun;Lee, Tae-Hoon;Park, Chang-Kyun;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1571-1573
    • /
    • 2003
  • Diamond films including nanocystalline and graphite phase are grown by microwave plasma chemical vapor deposition using $N_2$ additives and negative substrate bias at growth step. The microstructure of the films is controlled by changing $N_2$ gas ratio and negative bias. Defects and grain boundaries between diamond and graphite are proposed to be crucial factors for forming the conducting path of electron emissions. The effect of growth parameters on the film microstructure are investigated by Raman spectroscopy and scanning electron microscopy(SEM). Electron emission characteristics are also examined in terms of the film growth conditions.

  • PDF

Anti-Reflective coating for External Efficiency of Organic Light Emitting Diode

  • Kim, Byoung-Yong;Han, Jin-Woo;Kim, Jong-Yeon;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Oae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.449-449
    • /
    • 2007
  • OLED has many advantages of low voltage operation, self radiation, light weight, thin thickness, wide view angle and fast response time to overcome existing liquid crystal display (LCD)'s weakness. Therefore, It draws attention as promising display and has already developed for manufactured goods. Also, OLED is regarded as a only substitute of flexible display with a thin display. A considerable portion of the light originating film emissive centers buried in a solid film never escapes due to internal reflection at the air-film interface and is scattered as edge emission or dissipated within the solid film This is one of the major reasons why the luminous power efficiency of OLED remains low, in spite of research progress in OLED. Although several ways of overcoming this difficulty have been reported, no comprehensive method has been proposed yet. In this paper, we propose that use of anti-reflective coating layers.

  • PDF

A Study on the Dielectric Polarization of Organic Light-Emitting Diodes (유기 발광 다이오드의 유전분극에 관한 연구)

  • Oh, Y.C.;Chung, D.H.;Shin, C.G.;Kim, J.S.;Kim, K.J.;Kim, S.J.;Kim, C.H.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.490-491
    • /
    • 2007
  • We have investigated dielectric polarization in organic light-emitting diodes using 8-hydroxyquinoline aluminum$(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric polarization of organic light emitting diodes using impedance. Impedance characteristics was measured complex impedance Z and phase ${\theta}$ in the frequency range of 40Hz to $10^8Hz$. We obtained dielectric constant and loss tangent (tan ${\delta}$) of the device. From these analyses, we are able to interpret a dielectric dispersion and dielectric absorption contributed by an interfacial and orientational polarization.

  • PDF

Improvements of Color Purity in White OLED using $Zn(HPB)_2$ and Zn(HPB)q ($Zn(HPB)_2$와 Zn(HPB)q를 이용한 White OLED의 색순도 향상에 관한 연구)

  • Jang, Su-Hyun;Back, Sun-Jin;Choi, Kou-Chea;Lee, Hak-Dae;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2018-2019
    • /
    • 2007
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely $Zn(HPB)_2$ and Zn(HPB)q, which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO / NPB (40 nm) / $Zn(HPB)_2$ (40 nm) / Zn(HPB)q (20 nm) / LiAl (120nm). As a result, we obtained a maximum luminance of $15325cd/m^2$ at a current density of $997\;mA/cm^2$. The CIE (Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.

  • PDF

Dielectric Properties Depending on Temperature in Organic Light-emitting Diodes(ITO/$AIq_3$/AI) (유기 발광 다이오드(ITO/$AIq_3$/AI)의 온도 변화에 따른 유전 특성)

  • Oh, Y.C.;Lee, D.K.;Cho, C.N.;Ahn, J.H.;Jeong, Dong-Hui;Lee, S.I.;Kim, G.Y.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.74-75
    • /
    • 2006
  • We have investigated dielectric properties depending on temperature in organic light-emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using characteristics of impedance. he Impedance characteristics was measured complex impedance Z and phase $\theta$ in the temperature range of 10 K to 300 K. We obtained complex electrical conductivity, dielectric constant and loss tangent ($tan{\delta}$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

The Effects of Deposition Rate on the Physical Characteristics of OLEDs (유기발광 다이오드의 물성에 미치는 증착속도의 영향)

  • Lee, Young-Hwan;Cha, Ki-Ho;Kim, Weon-Jong;Lee, Jong-Yong;Kim, Gwi-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.54-55
    • /
    • 2006
  • Organic light-emitting diodes(OLEOs) are attractive because of possible application in display with low operating voltage, low power consumption, self-emission and capability of multicolor emission by the selection of emissive material. We investigated the effects of deposition rate on the electrical characteristics, physical characteristics and optical characteristics of OLEOs in the ITO(indium-tin-oxide)/N.N'-diphenyl-N,N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/Al device. We measured current density, luminous flux and luminance characteristics of devices with varying deposition rates of TPD and $Alq_3$. It has been found that optimal deposition rate of TPD and $Alq_3$ were respectively $1.5{\AA}/s$ from the device structure. An AFM measurement results, surface roughness of the deposited film was the lowest when deposition rate was $1.5{\AA}/s$.

  • PDF

Electrical Properties of White OLEDs used such as $Zn(HPB)_2$ and Zn(HPB)q ($Zn(HPB)_2$와 Zn(HPB)q를 이용한 White OLEDs의 전기적 특성)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Kim, Doo-Seok;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.416-417
    • /
    • 2006
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely [2-(2-hydroxyphenyl)benzoxazole] ($Zn(HPB)_2$) and [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q), which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO/PEDOT:PSS (23 nm)/NPB (40 nm)/$Zn(HPB)_2$ (40 nm)/Zn(HPB)q (20 nm)/$Alq_3$ (10 nm)/LiAl (120 nm). As a result, we obtained a maximum luminance of $15325\;cd/m^2$ at a current density of $997\;mA/cm^2$. The CIE(Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.

  • PDF

Characteristics of impedance spectroscopy depending on thickness of emissive layer in Organic Light-Emitting Diodes (유기발광소자의 발광층 두께변화에 따른 임피던스 특성 분석)

  • Ahn, Joon-Ho;Lee, Joon-Ung;Chung, Dong-Hoe;Lee, Sung-Ill;Song, Min-Jong;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.193-196
    • /
    • 2005
  • 유기발광소자의 발광층의 두께에 따른 임피던스의 변화를 살펴보았다. 임피던스는 두께에 따라 저항의 변화에 따른 의존성을 보이며, 그에 따른 임피던스와 Cole-Cole 반원의 변화, 두께에 따른 $1/\tau$ 의 변화를 살펴보았다. 발광층의 두께는 각각 100, 200, 300 nm의 두께로 열증착하여 실험하였고, 소자의 구조는 $ITO/Alq_3/Al$의 구조로 측정 하였다. 유기발광소자의 발광층인 $Alq_3$의 두께가 증가함에 따라 임피던스의 크기가 증가하고, 위상각의 크기는 100nm의 경우 0V에서 용량성을 보이다가 6~10V까지 부성저항특성을 나타낸 후 약 22V에서 저항성을 나타내고, 200과 300 nm의 경우 12V까지 용량성을 나타내다 이후 22V 근방에서 $0^{\circ}$에 가까워지며 저항성을 나타내는 것을 알 수 있었다. 또한 두께에 따른 Cole-Cole 반원을 살펴보면 두께가 증가할수록 반원의 크기가 증가하는 것을 알 수 있으며, 이를 통해 간단한 등가회로를 예측할 수 있었다. 그리고 벌크내의 용량성$(C_p)$을 측정하여 두께의 증가에 따라 $C_p$ 값이 감소하는 것을 알 수 있었다.

  • PDF

CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES FOR THE DEVICES WITH ELECTRON INJECTION LAYER (LIF AND $LI_2O$) (전자주입층(LiF와 $Li_2O$)을 사용한 유기 발광 소자의 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Lee, Ho-Sik;Song, Min-Jong;Lee, Won-Jae;Han, Wone-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.439-440
    • /
    • 2007
  • To enhance the electron injection from the cathode of organic light-emitting diodes (OLEDs), We have studied characteristics of device that electron injection layer(EIL) is inserted between emissive layer and cathode. We fabricated bi-layer cathode $Li_2O$(x nm)/Al(100nm) and LiF(x nm)/Al(100nm) using LiF and $Li_2O$ as an electron injection layer. We analyzed the current efficiency, luminance efficiency, and external quantum efficiency of the device by varying the thickness of $Li_2O$ and LiF to be 0.5nm, 1nm, or 3nm. Using the EIL, we have obtained the efficiency of 7cd/A and the luminance of $20,000cd/m^2$. There is an improvement of efficiency by more than 3 times than the device without the $Li_2O$ layer.

  • PDF

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF