• Title/Summary/Keyword: emission-limited mode

Search Result 12, Processing Time 0.017 seconds

Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion (Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석)

  • 김연승;변영철;황정호
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.3-17
    • /
    • 1999
  • Smoldering is a non-flaming combustion mode, characterized by thermal degradation and c charring of the virgin material, evolution of smoke and emission of visible glow. A big fire may @ occur even in a confined environment having a limited amount of oxygen, due to smoldering c combustion through a porous solid material. This paper presents a theoretical analysis on the effect of smoldering combustion on fire occurrence based on a report about fire investigation of a real f fire accident. It is assumed that the propagation of the smolder wave is one-dimensional, d downward, opposing an upward forced flow and steady in a frame of reference moving with the s smolder wave. Smoldering combustion is modeled by a one-step reaction mechanism, without c considering pyrolysis. It is found that dominant parameters controlling smoldering combustion i include mass flux of oxidizer entering the reaction zone and void fraction of solid fuel. It is also found that the mechanism of transition to flaming is critically influenced by these two parameters.

  • PDF

Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy

  • Sharbidre, Rakesh Sadanand;Park, Se Min;Lee, Chang Jun;Park, Byong Chon;Hong, Seong-Gu;Bramhe, Sachin;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.705-709
    • /
    • 2017
  • The electronic and optical characteristics of molybdenum disulphide ($MoS_2$) film significantly vary with its thickness, and thus a rapid and accurate estimation of the number of $MoS_2$ layers is critical in practical applications as well as in basic researches. Various existing methods are currently available for the thickness measurement, but each has drawbacks. Transmission electron microscopy allows actual counting of the $MoS_2$ layers, but is very complicated and requires destructive processing of the sample to the point where it will no longer be useable after characterization. Atomic force microscopy, particularly when operated in the tapping mode, is likewise time-consuming and suffers from certain anomalies caused by an improperly chosen set point, that is, free amplitude in air for the cantilever. Raman spectroscopy is a quick characterization method for identifying one to a few layers, but the laser irradiation causes structural degradation of the $MoS_2$. Optical microscopy works only when $MoS_2$ is on a silicon substrate covered with $SiO_2$ of 100~300 nm thickness. The last two optical methods are commonly limited in resolution to the micrometer range due to the diffraction limits of light. We report here a method of measuring the distribution of the number of $MoS_2$ layers using a low voltage field emission electron microscope with acceleration voltages no greater than 1 kV. We found a linear relationship between the FESEM contrast and the number of $MoS_2$ layers. This method can be used to characterize $MoS_2$ samples at nanometer-level spatial resolution, which is below the limits of other methods.