• Title/Summary/Keyword: emission characteristic

Search Result 636, Processing Time 0.029 seconds

Utility of FDG PET-CT Scans on Nodal Staging of Squamous Cell Carcinoma in the Oral Cavity and Oropharynx (구강 및 구인두 편평상피암종의 림프절 전이에 대한 PET-CT 영상의 유용성)

  • Joo, Young-Hoon;Sun, Dong-Il;Park, Jun-Ook;Yoo, Ie-Ryung;Kim, Min-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Objectives : We evaluated the use of FDG PET/CT for the identification of cervical nodal metastases of SCC of the oral cavity and oropharynx with histological correlation. Material and Methods : We reviewed 46 medical records, from January 2004 to July 2007, of patients who underwent FDG PET/CT and CT/MRI for SCC of the oral cavity and oropharynx before surgery. We recorded the lymph node metastases according to the neck level affected and the system used for the imaging-based nodal classification. Results : The FDG PET/CT had a sensitivity of 75.6% and a specificity of 96.7% ; it had a higher sensitivity than the CT/MRI for identification of cervical metastases on the side of the neck(26/28 vs. 20/28, p=0.031) and at each of the cervical levels(34/45 vs. 26/45, p=0.008). There was a significant difference in the $SUV_{max}$ between the benign and malignant cervical lymph nodes($3.31{\pm}3.23$ vs. $4.22{\pm}2.57$, p=0.028). The receiver-operating-characteristic (ROC) curve analysis for differentiating the benign from the malignant cervical lymph nodes, showed that the area under the curve(AUC) of the FDG PET/CT was 0.775. The cut-off value for the $SUV_{max}$ was 2.23 based on the ROC curve. There was a significant correlation between the $SUV_{max}$ and the size of the cervical lymph nodes(Spearman r=0.353, p=0.048). Conclusion : FDG PET/CT images were more accurate than the CT/MRI images. In addition, the $SUV_{max}$ cut-off values were important for evaluating cervical the cervical nodes in the patients with SCC of the oral cavity and oropharynx.

Pre-treatment Metabolic Tumor Volume and Total Lesion Glycolysis are Useful Prognostic Factors for Esophageal Squamous Cell Cancer Patients

  • Li, Yi-Min;Lin, Qin;Zhao, Long;Wang, Li-Chen;Sun, Long;Dai, Ming-Ming;Luo, Zuo-Ming;Zheng, Hua;Wu, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1369-1373
    • /
    • 2014
  • Objectives: To study application of the maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) with $^{18}F$-FDG PET/CT for predicting prognosis of esophageal squamous cell cancer (ESC) patients. Methods: Eighty-six patients with ESC staged from I to IV were prospectively enrolled. Cisplatin-based chemoradiotherapy (CCRT) or palliative chemoradiotherapy were the main treatment methods and none received surgery. $^{18}F$-FDG PET/CT scans were performed before the treatment. SUVmax, MTV, and TLG were measured for the primary esophageal lesion and regional lymph nodes. Receiver operating characteristic curves (ROCs) were generated to calculate the P value of the predictive ability and the optimal threshold. Results: MTV and TLG proved to be good indexes in the prediction of outcome for the ESC patients. An MTV value of 15.6 ml and a TLG value of 183.5 were optimal threshold to predict the overall survival (OS). The areas under the curve (AUC) for MTV and TLG were 0.74 and 0.70, respectively. Kaplan-Meier analysis showed an MTV less than 15.6 ml and a TLG less than 183.5 to indicate good media survival time (p value <0.05). In the stage III-IV patient group, MTV could better predict the OS (P < 0.001), with a sensitivity and specificity of 0.80 and 0.67, respectively. Conclusions: Pre-treatment MTV and TLG are useful prognostic factors in nonsurgical ESC.

Fabrication and characteristics of ZnO nanorods grown on Zn substrates by the hydrothermal method (수열합성법에 의해 Zn 기판 위에 제조된 ZnO 나노로드의 특성)

  • Sung, Ji-Hye;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Yeon, Deuk-Ho;Cho, Yong-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.147-152
    • /
    • 2011
  • ZnO nanorods fabricated on a Zn substrate pre-coated with ZnO as a seed layer by the hydrothermal method were studied mainly as a function of ZnO precursor concentration. Characteristic features by using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were investigated to define the changed micro-structure and crystalline phase of the ZnO nanorods according to the experimental conditions. The nanorod morphology strongly depended on the precursor concentration. For example, ZnO nanorods vertically aligned with a hexagonal (002) oriented structure with a diameter of 600~700 nm and length of $6.75{\mu}m$ were clearly observed at the highest concentration of 0.015 M. The strong hexagonal structure was believed to be associated with the highest photoluminescene (PL) intensity and a promising voltage value of ca. 6.069 V at $1000{\mu}A$.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

Investigation on Properties of Cement Mortar Using Heat Treated Flue Gas Desulfurization Gypsum (열처리된 배연탈황석고를 혼입한 시멘트 모르타르의 물성 연구)

  • Chung, Chul-Woo;Lee, Yong-Mu;Kim, Ji-Hyun;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.497-503
    • /
    • 2016
  • Flue gas desulfurization gypsum is produced from emission process of fossil fuel power plant to remove sulfur dioxide ($SO_2$) from exhaust gas. Production of flue gas desulfurization gypsum in Republic of Korea has been increasing due to the enforced regulations by government agency. Since flue gas desulfurization gypsum has characteristic that is similar to that of natural gypsum, there is a strong possibility for flue gas desulfurization gypsum to replace the role of natural gypsum. However, consumption of such material is still limited, only used for agricultural purposes or to make gypsum boards, it is necessary to expand the use of this material more aggressively. In this research, the chemical and mineralogical properties of flue gas desulfurization gypsum were investigated, and flue gas desulfurization gypsum with heat treatment was used to make cement paste. According to the results, it was found that flue gas desulfurization gypsum used in this experiment was a very high purity gypsum, and shown to have similar property to that of natural gypsum. Heat treating flue gas desulfurization gypsum above $100^{\circ}C$ was shown to bring beneficial effect on both compressive strength and drying shrinkage

Hydrothermal Synthesis of Ultra-fine SrAl2O4:Eu Powders and Investigation of their Photoluminescent Characteristics (수열합성법에 의한 SrAl2O4:Eu 초미세 분말 합성공정 및 형광 특성)

  • 박우식;김선재;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.370-374
    • /
    • 2004
  • Sr$_{l-x}$Ba$_{x}$Al$_2$O$_4$:Eu (x = 0, 0.1, 0.2, and 0.3 mol) phosphor was synthesized by the hydrothermal method and its properties of photoluminescence and long-afterglow were investigated. The mixtures of Sr(NO$_3$)$_2$, Al(NO$_3$)$_3$9$H_2O$, and Eu(NO$_3$)$_3$$.$6$H_2O$ salts dissolved in distilled water, after controlling their pH by NH$_4$OH solution, put into an Autoclave reactor with high temperature and pressure to react. Such synthesized SrAl$_2$O$_4$:Eu powders showed homogeneous and ultra-fine particles of sub-micron size. In order to have the photoluminescence characteristic, powders were heat treated at 1100 -140$0^{\circ}C$ for 2 h in Ar/H$_2$ reduction atmosphere. Photoluminescence spectra showed a excitation along the wide wavelength of 250 ∼ 450 nm, and broaden emission with maxima peak at 520 nm. Also, it showed a good long afterglow with decaying over 1000 sec after excitation illumination for 10 min. In addition, the microstructure and crystal structure of SrAl$_2$O$_4$:Eu powders were investigated by an SEM and XRD, respectively.

Experimental Study on Structure Characteristics of Particulate Matter emitted from Ship at Various Sampling Conditions (다양한 샘플링 조건에 따른 선박 배기가스 내 입자상물질의 구조 특성에 관한 실험 연구)

  • Lee, Won-Ju;Jang, Se-Hyun;Kim, Sung-Yoon;Kang, Mu-Kyoung;Chun, Kang-Woo;Cho, Kwon-Hae;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.547-553
    • /
    • 2016
  • Black carbon (BC) contained in particulate matter (PM) originating from the exhaust gases of ships' diesel engines has been receiving great attention as a cause of glacial melting and warming in the polar regions. In this study, we took samples from various locations of PM emitted from the training ship (T/S) HANBADA's main engine, in cooperation with the Korea Maritime and Ocean University. We analyzed the structure and characteristics of these samples using high-resolution transmission electron microscopy (HR-TEM) and applied our findings as fundamental research for developing PM reduction technology. We also employed our results to determine appropriate preemptive action to meet upcoming PM/BC regulations. In addition, we confirmed the emission trend of pollutants from exhaust gases under various engine operating conditions using an exhaust gas analyzer. Results obtained from the analysis of HR-TEM images showed that the structure of the PM is chain-like wispy agglomerates consisting of a number of individual spherical particles. As the sampling location was moved away from the turbo charger (T/C) towards the funnel, more condensates were observed at a low temperature and the molecular structure of the PM lost its characteristic BC structure as an amorphous structure gradually appeared. Furthermore, through the analysis of exhaust gases, we predicted a decrease in PM concentration in the exhaust stream as engine rpm increase.

Development and Effectiveness of Private Parking Information Algorithm (복합용도 초고층빌딩에 대한 개별주차정보제공 알고리즘 개발)

  • Kim, Young-Sun;Nam, Baek;Lee, Choul-Ki;OH, Young-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.13-21
    • /
    • 2013
  • Super high-rise buildings of combined use such as large shopping malls and multiplex etc. have larger parking facilities than general buildings and are characteristic of an increase in the number of the entrance and the exit connecting internal external space of the parking lot. These features cause a congestion of internal traffic by increasing car driving distance in the parking lot, and vehicle idling increases by drivers wander the parking lot in order to find parking space. In addition, they make drivers suffer from lots of difficulties due to parking including increasing their walking line after parking. Therefore, in this study, we developed individual parking information provision algorithm to specify the optimal parking place for drivers according to the purpose of visiting a building and the drivers' moving path, and selected new construction site for the second lotte world in order to evaluate the algorithm developed and performed evaluation. As a result of the evaluation, it was analyzed that in the case of applying the individual parking information provision algorithm compared to the existing parking information provision algorithm, moving distance in the parking lot decreases around 7.43~83.4%, and that in the case of $CO_2$ emission, it decreased about 47.7% on average, which indicates that the efficiency resulted from application of the individual parking information provision algorithm is very high as the application effects are tested.

Preparation and Characterization of Ferrite Supported on Porous Ceramic Fiber Composites for Co2 Decomposition (이산화탄소 분해용 페라이트 담지 다공성 세라믹 섬유복합체 제조와 물성)

  • Lee, Bong-Soo;Kim, Myung-Soo;Choi, Seung-Chul;Oh, Jae-Hee;Lee, Jae-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2002
  • The decomposition and/or conversion of carbon dioxide to carbon have been studied using oxygen-deficient ferrites for the reduction of $CO_2$ emission to the atmosphere. In this work, the homogeneous precipitation method using urea decomposition was employed to induce in situ precipitation of Ni ferrite($Ni_{0.4}Fe_{2.6}O_4$) on the porous ceramic fiber support (50 mm diameter${\times}$10 mm thickness). Effects of ferrite loading conditions on the CO2 decomposition efficiency were discussed in this paper. Removal of residual chloride ions and urea by solvent exchange from the porous media after ferrite deposition apparently helps to form spinel ferrite, but does not increase the efficiency of $CO_2$ decomposition. Porous ceramic fiber composites containing 20 wt% (1g) ferrite samples showed 100% efficiency for $CO_2$decomposition during the first three minutes, but the efficiency decreased rapidly after the elapsed time of ten minutes. The characteristic reduction time for the $CO_2$ decomposition efficiency was estimated as about 3∼7 min.

Diagnostic Accuracy of 18F-FDG-PET in Patients with Testicular Cancer: a Meta-analysis

  • Zhao, Jing-Yi;Ma, Xue-Lei;Li, Yan-Yan;Zhang, Bing-Lan;Li, Min-Min;Ma, Xue-Lei;Liu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3525-3531
    • /
    • 2014
  • Objective: Fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is a new technique for identifying different malignant tumors using different uptake values between tumor cells and normal tissues. Here we assessed the diagnostic accuracy of 18F-FDG-PET in patients with testicular cancer by pooling data of existing trials in a meta-analysis. Methods: PubMed/MEDLINE, Embase and Cochrane Central Trials databases were searched and studies published in English relating to the diagnostic value of FDG-PET for testicular cancer were collected. The summary receiver operating characteristic (SROC) curve was used to examine the FDG-PET accuracy. Results: A total of 16 studies which included 957 examinations in 807 patients (median age, 31.1 years) were analyzed. A meta-analysis was performed to combine the sensitivity and specificity and their 95% confidence intervals (CIs), from diagnostic odds ratio (DOR), positive likelihood ratios (PLR), negative likelihood ratio (NLR). SROC were derived to demonstrate the diagnostic accuracy of FDG-PET for testicular cancer. The pooled sensitivity and specificity were 0.75 (95% confidence interval (CI), 0.70-0.80) and 0.87 (95% CI, 0.84-0.89), respectively. The pooled DOR was 35.6 (95% CI, 12.9-98.3). The area under the curve (AUC) was 0.88. The pooled PLR and pooled NLR were 7.80 (95% CI, 3.73-16.3) and 0.31 (95% CI, 0.23-0.43), respectively. Conclusion: In patients with testicular cancer, 18F-FDG-PET demonstrated a high SROC area, and could be a potentially useful tool if combined with other imaging methods such as MRI and CT. Nevertheless, the literature focusing on the use of 18F-FDG-PET in this setting still remains limited.