• Title/Summary/Keyword: emergency vehicle preemption

Search Result 15, Processing Time 0.021 seconds

Assessment of Preemption Signal Control Strategy for Emergency Vehicles in Korea (국내 긴급차량 우선신호(preemption) 제어 적용성 평가에 관한 연구)

  • Yang, Lyun-Ho;Lee, Sang-Soo;Oh, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.63-72
    • /
    • 2008
  • Signalized intersections are operated without a signal preemption control strategy in Korea, thus there is no priority treatment for an emergency vehicle passing through the intersections. In this paper, a signal preemption control strategy is introduced to improve the safety and operational efficiency of an emergency vehicle. Using the micro simulation tool, the effects on delay and travel speed of the signal preemption control strategy are analyzed for various traffic conditions to identify the general performance trends. Then, another simulation analysis is performed to verify the feasibility of the control strategy using real network data collected from field study. Results show that the preemption control strategy provides the positive impact on emergency vehicles' operation, but the positive impact is reduced as the v/c ratios increase. As expected, the average delays of the normal vehicles are slightly increased, but the magnitude is not significant. Therefore, it is expected that the introduction of the preemption control strategy in Korea would produce the positive social benefits.

A Study on the Preemption Control Strategies Considering Queue Length Constraints (대기행렬길이 제약조건을 고려한 Preemption 제어 전략에 관한 연구)

  • Lee, Jae-Hyeong;Lee, Sang-Su;O, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.179-187
    • /
    • 2009
  • Currently, the signalized intersections in Korea are operated without providing an emergency vehicle preemption control strategy. Thus, it might threaten the safety of the pedestrians and drivers on highways when an emergency vehicle faces congested traffic conditions. The existing preemption control is activated when an emergency vehicle is detected along a path. This enables emergency vehicles to progress uninterrupted, but it also increases the delay of other vehicles. In this paper, a revised preemption control strategy considering queue length restrictions is proposed to make both a progressive movement of an emergency vehicle and reduce delay of other vehicles simultaneously. By applying the preemption control strategy through a simulation study, it was shown that delay of an emergency vehicle decreased to 44.3%-96.1% and speed increased to 8.8%-42.0% in all 9 cases as compared with a conventional signal control. The existing preemption control is superior for oversaturated conditions (v/c >1.0) or a link length less than 200m. However, the preemption control considering queue length constraints shows better performance than the existing preemption control when the v/c is less than 0.8 and a link length is longer than 500m.

Applicability of Emergency Preemption Signal Control under UTIS (UTIS를 이용한 긴급차량 우선신호 제어방안)

  • Park, Soon-Yong;Kim, Dong-Nyong;Kim, Myung-Soo;Lee, Jung-Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.27-37
    • /
    • 2012
  • Even thought the firefighters have to hurry to the scene to extinguish the blaze, the fire engines could not rushed out due to the worst of traffic condition. Traffic signal control is one of the most important methods to minimize the fire engines's travel time. The focus of this paper is to develop a traffic control strategy, which is emergency vehicle preemption algorithm considering pedestrian in order to reduce travel time of emergency vehicle. This algorithm also includes recovering strategy after preemption signal to minimize the other vehicle's delay. In order to estimate the effectiveness of traffic control, traffic simulation was performed using VISSIM micro simulation tool for two different kinds of networks, which were non-coordinated corridor and coordinated corridor. The differences of travel time and average delay between emergency vehicle and ordinary vehicle were respectively estimated under pre-existed pretimed signal and preemption traffic control at two respective networks. The results of the simulation for the emergency vehicle, travel time was reduced to 36.8~43.3% under "Add or Subtract" method whereas it was reduced to 30.7~46.0% under "Dwell" method. In addition, in non-coordinated corridor case of ordinary vehicle, average control delay of "Dwell" method was increased 33.5% whereas it grew 0.5% under coordinated corridor. And "Add or Subtract" method was confirmed that average control delay of ordinary vehicle was increased 0.7% under non-coordinated corridor whereas it swelled 4.5% under coordinated corridor.

Adaptability Analysis of Emergency Preemption System in Field Operation (긴급차량 우선신호시스템 현장운영에 따른 적용성 분석)

  • Kim, Sang-Yeon;Ko, Kwang Yong;Park, Soon Yong;Jeong, Young Gje;Lee, Choul Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.95-109
    • /
    • 2017
  • The golden time of emergency vehicle is directly connected to the public safety. Therefore, national attention has increased to cut down the emergency vehicle's travel time. In order to shorten the intial dispatch time of it, emergency preemption system was installed at five intersections, and after test operation, whether it could be introduced in the country was estimated. We analyzed the effect of the traffic volume, emergency vehicle's travel time, and queue length under preemption and non-preemption. In the verification of the emergency preemption system, it was confirmed that the emergency vehicle's travel time was reduced from 350% to 24% compared to non-preemption system(TOD). In the saturated condition, queue length were remained 15 minutes and near saturated condition was about 30 or 45 minutes. At the non-saturated condition, the queue length's difference between emergency preemption system and general signal was small.

Performance Evaluation of Smart Intersections for Emergency Response Time based on Integration of Geospatial and Incident Data

  • Oh, Heung Jin;Ashuri, Baabak
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.945-951
    • /
    • 2022
  • The major objective of this research is to evaluate performance of improved intersections for response time to emergency vehicle preemption. Smart technologies have been introduced to civil infrastructure systems for resilient communities. The technologies need to evaluate their effectiveness and feasibility to confirm their introduction. This research focuses on the performance of emergency vehicle preemption, represented by response time, when smart intersections are introduced in a community. The response time is determined by not only intersections but also a number of factors such as traffic, distance, road conditions, and incident types. However, the evaluation of emergency response has often ignored factors related to emergency vehicle routes. In this respect, this research synthetically analyzes geospatial and incident data using each route of emergency vehicle and conducts before-and-after evaluations. The changes in performance are analyzed by the impact of smart intersections on response time through Bayesian regression models. The result provides measures of the project's performance. This study will contribute to the body of knowledge on modeling the impacts of technology application and integrating heterogeneous data sets. It will provide a way to confirm and prove the effectiveness of introducing smart technologies to our communities.

  • PDF

Development of the Emergency Vehicle Preemption Control System Based on UTIS (UTIS 기반의 긴급차량 우선신호제어 시스템 개발)

  • Hong, Kyung-Sik;Jung, Jun-Ha;Ahn, Gye-Hyeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • In this paper, we have developed the system of emergency vehicle preemption signal control based on UTIS(Urban Traffic Information System) which have been deployed and operated in the national capital area. It considered the turning direction(through or left turn) of emergency vehicle at the signalized intersection in order to provide the consecutive progression of emergency vehicle and minimize the control delay of passenger cars. we adopted several EVP control modes such as phase insertion and phase adjustment mode. Also, we evaluated the possibility of field implementation via simulation analysis using CORSIM RTE(Run Time Extension) based HILS(Hardware In the Loop Simulation). We expect that the result of this research contribute to providing the right-of-way to emergency vehicle in this country.

A Selection Method of Implementation Area for Emergency Vehicle Preemption System Using Dispatch Data Analysis (출동현황자료 분석을 통한 재난대비 긴급차량 우선신호제어 시스템 도입지역 선정방안 연구)

  • Sung, Joong Gi;Ha, Dongik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.24-35
    • /
    • 2016
  • Emergency Vehicle Preemption(EVP) is an operation method which helps to improve response condition of Emergency Vehicle(EV) and it has not yet been introduced in Korea. In order to implement the system, it requires step-by-step plan and selecting a priority area for trial operation. Since a municipal government such as Seoul is too large so it is limited in time and cost to analyze the whole area. Therefore, quantitative and effective selection method for priority area is critical. The aim of this study is to propose a selection method of implementation area for EVP system using the dispatch data analysis. This study also determined the priority area for EVP implementation by analyzing the dispatch data in Seoul and conducted a simulation to evaluate the effects of implementing EVP.

A Study on the Operation Plan of the Emergency Vehicle Preemption Based on Operation Status and Survey Data (긴급차량 운행실태와 의식도조사 분석을 통한 우선신호 운영방안 연구)

  • Eunjeong Ko;Jooyoung Lee;Junhan Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.143-160
    • /
    • 2023
  • It is important to secure the golden time of emergency vehicles for quick responses in disaster situations, such as fire, rescue, and first aid. This study proposes plans Emergency Vehicle Preemption (EVP) based on the analysis of emergency vehicle operation to secure the golden time of emergency vehicles and increase driving safety. The emergency vehicle dispatch statistics, emergency vehicle traffic accident statistics, and survey were used for the analysis. As a result of the analysis, the frequency of dispatch of emergency vehicles and traffic accidents are increasing gradually, but the rate of securing the golden time of emergency vehicles is approximately half, indicating that improvement measures are urgent. In the questionnaire survey, most citizens consent to the necessity of introducing EVP. In addition, the criteria for the range of emergency vehicles that could provide EVP and the allowable time for waiting were derived. These results could be used to prepare EVP operation strategies, and it is expected to contribute to improving emergency vehicle operation safety and increasing the golden time securing rate through a rapid expansion of EVP.

Field Application Analysis of Center Control Emergency Vehicle Preemption System (중앙제어방식 긴급자동차 우선신호 현장적용성 분석)

  • Lee, Young-Hyun;Han, Seung-Chun;Jeong, Do-Young;Kang, Jin-Dong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.137-154
    • /
    • 2019
  • This study analysed the center control emergency vehicle preemption[EVP] test result on the 1.782 km section around Gangbuk Fire Station. The pros and cons between center control and site control EVP was compared through the review of existing research. The test site was selected based on the higher link speed for choosing low congested area and 4 to 6 lane road. EVP operates green extension under the estimated arrival time to each intersection. This study is about EVP system field application and its evaluation by analyzing EVP operation result with the emergency vehicle's trace, GPS data. The impact on the surrounding traffic was analysed in delay from the queue length survey. Analysis showed the decrease in averge travel time 41.81%, but the increase in delay of surrounding traffic slightly. It is expected that EVP can be applied to the expanded area by researching EVP compensation scheme.