• Title/Summary/Keyword: embryos sexing

Search Result 51, Processing Time 0.028 seconds

Use of the Non-electrophoretic Method to Detect Testis Specific Protein Gene for Sexing in Preimplantation Bovine Embryos

  • Huang, Jinming;You, Wei;Wu, Naike;Tan, Xiuwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.866-871
    • /
    • 2007
  • Testis-specific protein (TSPY) is a Y-specific gene, with up to 200 copy numbers in bulls. In order to make bovine embryo sexing under farm condition more feasible, the possibility of using a non-electrophoretic method to detect the TSPY gene for sexing bovine early embryos was examined. Primers were designed to amplify a portion of the TSPY gene and a common gene as an internal control primer. PCR optimization was carried out using a DNA template from bovine whole blood. Furthermore, embryo samples were diagnosed by this method and the sexing results were contrasted with those of the Loop-Mediated Isothermal Amplification (LAMP) method. The results showed that TSPY was as reliable a sexing method as LAMP. Forty-three morula and blastocyst embryos collected from superovulated donor dairy cattle were sexed by this method, and twenty-one embryos judged to be female embryos were transferred non-surgically to recipients 6 to 8 days after natural estrus. Out of 21 recipients, 9 were pregnant (42.86%) and all delivered female calves. The results showed that the sex predicted by this protocol was 100% accurate. In conclusion, the TSPY gene was a good male specific marker and indicated that a non-electrophoretic method was feasible and accurate to detect the TSPY gene for sexing preimplantation bovine embryos.

Sex Determination of Hanwoo IVM/IVF Embryos by PCR (PCR 기법을 이용한 한우 체외수정란의 성판별)

  • 조은정;박동헌;박춘근;정희태;김정익;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2000
  • This study was performed 1) to establish the optimal PCR condition of sex determination in Hanwoo IVM/IVF embryos, 2) to examine the sex determination and sex ratio to the developmental stages of Hanwoo IVM/IVF embryos by two-step PCR method. The sexing of bovine IVF embryos were accurately determined by PCR methods using Y chromosome specific DNA primer(BOV 97M, 141bp) and bovine specific DNA primer(216bp). The fregment size were shown at 141 and 216 base pairs(bp) in male, and 216 bp in female. Two-steps PCR method in which the samples were amplified by 15 cycles with Y chromosome specific DNA primer and then amplified by additional 30 cycles with bovine specific DNA primer was effective in the sexing of bovine IVF embryos. The zona-free embryos were more effective than zona-intact embryos in bovine IVF embryo sexing. The appearance of Y chromosome specific band was 45.2% in embryos treated with protease K and 53.3% in embryos treated with freezing and thawing repeatedly. The optimun volume of DNA for sexing of Hanwoo IVF embryos were 2 to 10 $\mu$1 in Zona-free embryos and 12 to 13 $\mu$1 in zona-intact embryos. The sexing rate of bovine IVF embryos by PCR was 96.0% and questionable rate not identified sex was 4.0%, respectively. Among the sexed embryos, the percentage of male and female was 49.7% and 46.3%, respectively, the sex ratio was 1: 1.1. The successful rate of embryo sexing was increased to the developmental stages.

  • PDF

Embryo sexing methods in bovine and its application in animal breed

  • Bora, Shelema Kelbessa
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • The ability to determine the sex of bovine embryos before the transfer is advantageous in livestock management, especially in dairy production, where female calves are preferred in milk industry. The milk production of female and male cattle benefits both the dairy and beef industries. Pre-implantation sexing of embryos also helps with embryo transfer success. There are two approaches for sexing bovine embryos in farm animals: invasive and non-invasive. A non-invasive method of embryo sexing retains the embryo's autonomy and, as a result, is less likely to impair the embryo's ability to move and implant successfully. There are lists of non-invasive embryo sexing such as; Detection of H-Y antigens, X-linked enzymes, and sexing based on embryo cleavage and development. Since it protects the embryo's autonomy, the non-invasive procedure is considered to be the safest. Invasive methods affect an embryo's integrity and are likely to damage the embryo's chances of successful transformation. There are different types of invasive methods such as polymerase chain reaction, detection of male chromatin Y chromosome-specific DNA probes, Loop-mediated isothermal amplification (LAMP), cytological karyotyping, and immunofluorescence (FISH). The PCR approach is highly sensitive, precise, and effective as compared to invasive methods of farm animal embryonic sexing. Invasive procedures, such as cytological karyotyping, have high accuracy but are impractical in the field due to embryonic effectiveness concerns. This technology can be applicable especially in the dairy and beef industry by producing female and male animals respectively. Enhancing selection accuracy and decreasing the multiple ovulation embryo transfer costs.

Study on the Sexing of Mouse Embryos by Chromosomal Analysis (염색체 분석에 의한 생쥐초기부의 성 판별에 관한 연구)

  • 신현동;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • As a preliminary experiment to establish the process on the sexing of mouse embryos by chromosomal analysis, present studies were carried out with inbred (ICR, C57BL) and F1 hybrid [(ICR${\times}$C57BL) = F1 ${\times}$ ICR] mice to investigate the blastomere numbers and mitotic indices (M.I.) to the developmental stage of embryos recovered, the optimum periods of anti-mitotic agent administration, the successful rates of sexing and sex-ratio. The results obtained were summarized as follows: 1. The blastomere numbers (mean${\pm}$S.E.) of the morula and blastocyst were 18${\pm}$0.4 and 54${\pm}$0.7, respectively. 2. Whereas the M.I. of F1 hybrid (16${\pm}$0.2%) was higher than that fo inbred ICR (15${\pm}$0.1%) and C57BL (12${\pm}$0.6%) in the different strains, the morula (7${\pm}$0.6%) was higher than that of blastocyst (6${\pm}$0.4%) in the case of embryo stages. 3. Following to anti-mitotic agents treated, the M.I. of embryos cultured with Colcemid (17${\pm}$1.1%) was superior to that fo embryos cultured with Velban (12${\pm}$0.9%) and the Colcemid injection (7${\pm}$0.4%). 4. The successful rate of sexing in the blastocyst (38.7%; 124/320) was superior to the morula (35.9%; 52/145), and the F1 hybrid (48.1%) was higher than that of inbred ICR (42.4%) and C57 BL (28.2%). 5. In the successful rate of sexing to the methods of administration, the embryos cultured with Colcemid (46.0%) was superior to that of embryos cultured with Velban (39.0%) and the Colcemid injection (38.8%). 6. Of 98 embryos sexed after culture with Colcemid, 89(90.8%) were observed between 2 and 4 hrs. In the case of Velban treatment, 83.1% (74/89) was observed between 2$\frac{1}{2}$ and 4$\frac{1}{2}$ hrs. 7. Out of 761 prepared embryos it was possible to sex 311; 157 were male and 154 were female, i.e.a sex-ratio of 50% a, pp.oximately.

  • PDF

Sexing Goat Embryos by PCR Amplification of X- and Y- chromosome Specific Sequence of the Amelogenin Gene

  • Chen, A-qin;Xu, Zi-rong;Yu, Song-dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1689-1693
    • /
    • 2007
  • The objective of this study was to develop a simplified, efficient, and accurate protocol for sexing goat embryos. Based on the amelogenin gene located on the conservation region of X- and Y- chromosomes, a pair of primers was utilized and the system of PCR was established to amplify a 262 bp fragment from the X- chromosome in female goats, and a 262 bp fragment from X- chromosome and 202 bp fragment from the Y- chromosome in male goats, respectively. The accuracy and specificity of the primers were assessed using DNA template extracted from goat whole blood sample of known sex. 100% (10/10) concordance was obtained by using the PCR assay. Fifty-one biopsied embryos were transferred into 25 recipient goats on the same day that the embryos were collected and sex of the kid was confirmed after parturition. Eighteen kids of predicted sex were born. The biopsied samples from 51 goat embryos were amplified with 100% efficiency and 94.7% accuracy. In conclusion, our results indicated that PCR sexing protocols based on the amelogenin gene is highly reliable and suitable for sex determination of goats.

Sex determination of in vivo- and in vitro-derived bovine embryos (체내 및 체외 수정란의 할구를 이용한 성 판별)

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yun-Fei;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.269-275
    • /
    • 2011
  • The objective of this study was to develop a rapid and reliable PCR method for sexing of morula or blastocyst stage bovine embryo. BOV97M and bovine 1.715 satellite DNA sequences were selected for amplification of male and bovine specific DNA, respectively. But the unbalanced number of copies of these two repetitive sequences required some modification of PCR method. Karyotyping of blastomeres were carried for the confirmation of sex determination in bovine embryos. The coincidence rate of sex between biopsied-single blastomere and matched blastocyst was 80.0%. When in vivo- and in vitro- derived embryos were compared, 61.8% and 56.7% were male in in vitro- and in vivo-derived embryos, respectively. In vivo-derived embryos showed better hatching rate than in vitro-derived embryos following biopsy of blastomeres. In conclusion, rapid and effective PCR could be applied to sexing of bovine preimplantation embryos using single blastomere. The sensitivity of this assay may eliminate the need for biopsy of more than one nucleated blastomere and reduce trauma to the embryos derived from biopsy procedure.

Study on the sexing of preimplantation mouse embryo exposed to H-Y ntisera I. Sexing of mouse embryos by cytolytic assay (H-Y항체에 의한 생쥐초기배의 성판별에 관한 연구 I. 세포발육능검사에 의한 성판별)

  • 양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 1988
  • There studies were conducted using inbred ICR mice to examine the sex of preimplantation mouse embryo. The morphological normality of mice embryos treated with the culture medium containing rat H-Y antiserum(10%, v/v) plus complement(20%,v/v) was observed and also the sexing of embryos was investigated by chromosomal analysis. The results obtained were summarized as follows: 1. The viability of preimplantation mouse embryos, which were incubated in vitro with different media condition, was scored 68.9-85.5% in control group. However, 151 embryos normally developed up to blastocyst and 160 embryos were retarded growth or destroyed out of total 311 embryos treated in the medium containing H-Y antiserum(10%, v/v) plus complement(20%,v/v). 2. H-Y antiserum was prepared from inb red rats (Wistar and Donryu strain) with different immunization times (4, 5 and 6th) to examine the specific titer of embryos by the number of immunization. Precentage of normally developed embryos incubated either in the medium containing the antiserum of Wistar plus complement or Donryu plus complement was revealed 50.9, 47.4 and 50.0% (4, 5 and 6th immunization and 47.8, 41.2 and 48.7%, respectively. 3. Twenty two females and five males were identified out of fourty-eight normally developed embryos incubated in the medium containing H-Y antiserum plus complement by chromosomal analysis.

  • PDF

Comparison of Sexing Analysis between Karyotyping and Blasomere-PCR in Bovine embryos

  • Chang, Suk-Min;Lee, Jong-Ho;Park, Joong-Hoon;Park, Wha-Sik;Park, Chang-Sik;Jin, Dong-Il
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • Accurate analysis of nuclear status is needed when biopsied-blastomeres are used for embryo sexing. In this study, the nuclear status of blastomeres derived from 8- to 16-cell stage IVF bovine embryos was analyzed to evaluate the representative of single blastomere for embryo sexing. When 55 embryos were analyzed by PCR following biopsy, the coincident rate of sex determination between biopsied-single blastomere and matched blastocyst by PCR was 80 %. Karyotyping of biastomeres in 8- 16-cell stage bovine embryos was conducted to assess chromosome status of IVF embryos. To establish karyotyping of blastomeres, concentrations of vinblastine sulfate and duration of exposure time for metaphase plate induction with 8- to 16-cell stage bovine embryos were tested. The most effective condition for induction of metaphase plate (>45%) was 1.0 ug/ml vinblastine sulfate treatment for 15 h. In 22 embryos under the condition, only 8 embryos out of ten that had a normal diploid chromosome complement showed a sex-chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four out of the other 11 embryos having a mixoploid chromosomal complement contained haploid blastomere with wrong sex chromosome (18.2%). These results suggested that morphologically normal bovine embryos derived from IVF had considerable proportion of mixoploid and sex-chromosomal mosaicism which could be the cause of discrepancies of the sex between biopsied-single blastomere and matched blastocyst by PCR analysis.

  • PDF

Production and Cryopreservation of Sexed Embryos after Micromanipulative Biopsy and PCR (미세조작 및 PCR 기법을 이용한 성판별 수정란의 생산 및 동결)

  • 이홍준;서승운;김기동;이상호
    • Journal of Embryo Transfer
    • /
    • v.15 no.2
    • /
    • pp.175-180
    • /
    • 2000
  • The possible use of micromanipulative biopsy and PCR of the biopsied embryonic cells was tested to produce sexed bovine embryos in practical terms. By micromanipulation and PCR techniques, higher survival rate and accurate sexing of demi-embryos were btained. Bovine oocytes matured and fertilized in vitro were co-cultured with bovine oviductal epithelial cell (BOEC) monolayer in USU-6 medium supplemented with 15% FBS, and the embryos of 37% (327/885) were developed to blastocysts. Among 111 blastocysts produced by invitro, only 7 (6.3%) embryos were found unable to determine their sex, probably due to the loss of cells, since no PCR product was found from those cells. All the remaining 104 (93.7%) demi-embryos survived micromanipulation and demonstrated male-specific product or bovine-specific product alone suggesting that correct sexing of the sample. Forty-three point one percent(25/58) of manipulated and cryopreserved demi-embryos after thawing were survived. Final verification of the sexed embryos is necessary to make sure the same sex in fetus and newborn calf upon embryo transfer. The established sexing method on a large number of bovine embryos from previous and this study suggests that this a could be used practically in the field.

  • PDF

Sexing of Sheep Embryos Produced In vitro by Polymerase Chain Reaction and Sex-specific Polymorphism

  • Saravanan, T.;Nainar, A. Mahalinga;Kumanan, K.;Kumaresan, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.650-654
    • /
    • 2003
  • The accuracy of Polymerase chain reaction (PCR) assay in sexing of sheep embryos was assessed in this study. A total of 174 ovine embryos produced in vitro at different stages of development (2, 4-8 cell stages, morula and blastocyst) were sexed. The universal primers (P1-5EZ and P2-3EZ) used in this assay amplified ZFY/ZFX-specific sequences and yielded a 445 bp fragment in both sexes. Restriction enzyme analysis of ZFY/ZFX-amplified fragments with Sac I exhibited polymorphism between sexes, three and two fragments in males and in females, respectively. For verification of accuracy, blood samples of known sex were utilized as positive controls in each test. The mean percentages of sex identification by this method at 2 cell, 4-8 cell, morula and blastocyst were $73.00{\pm}5.72$, $89.77{\pm}3.79$, $3.33{\pm}8.08$ and $79.6{\pm}9.09$, espectively with the over all male to female ratio of 1:0.87. It is concluded that the ZFY/ZFX based method is highly reliable for the sexing of sheep embryos.