• 제목/요약/키워드: embryonic tissue

검색결과 172건 처리시간 0.033초

Gene Structure and Estrogen-Responsive mRNA Expression of a Novel Choriogenin H Isoform from a Marine Medaka Oryzias dancena

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제15권3호
    • /
    • pp.221-231
    • /
    • 2012
  • The marine medaka Oryzias dancena choriogenin H gene (odChgH) and its mRNA expression during estradiol-$17{\beta}$ (E2) exposure were characterized. At the amino acid level, the choriogenin H protein is predicted to possess the conserved repetitive N-terminal region, as well as zona pellucida (ZP) and Trefoil factor family (TFF) domains. At the genomic level, odChgH has an eight-exon organization with a distribution pattern of transcription factor binding sites in the 5'-upstream region, which is commonly found in other estrogen-responsive genes. The tissue distribution pattern of odChgH mRNA was found to be gender-specific, whereby females showed a higher expression level and wider tissue distribution than did males. During embryonic development, odChgH mRNA was robustly detected from the stage of visceral blood vessel formation. Experimental E2 exposure of males resulted in odChgH mRNA being induced not only in the liver, but also in other several tissues. The E2-mediated induction was fairly dose-dependent. The basal expression levels of hepatic odChgH mRNA were lower in males that were acclimated to 30 ppt salinity than in those acclimated to 0 or 15 ppt salinity. In contrast, the inducibility of odChgH mRNA during E2 exposure was greater in seawater-acclimated fish than in brackish water- or freshwater-acclimated fish.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages

  • Lee, Eunju;Eo, Jun-Cheol;Lee, Changjun;Yu, Je-Wook
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.281-291
    • /
    • 2021
  • Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • 제52권6호
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Analysis of platelet-derived growth factor receptor alpha expression in adult mouse testis

  • Min Seok Woo;Eun-Jin Kim;Dong Kun Lee;Chung Eun Lee;Eun-A Ko;Dawon Kang
    • 한국동물생명공학회지
    • /
    • 제39권2호
    • /
    • pp.81-87
    • /
    • 2024
  • Background: Platelet-derived growth factor receptor alpha (PDGFRα) is essential for various biological processes, including fetal Leydig cell differentiation. The PDGFRαEGFP mouse model, which expresses an eGFP fusion gene under the native Pdgfrα promoter, serves as a valuable resource for exploring PDGFRα's expression and function in vivo. This study investigates PDGFRα expression in adult testicular cells using PDGFRαEGFP mouse model. Methods: Genotyping PCR and gel electrophoresis were used to confirm the zygosity of PDGFRαEGFP mice. Histological examination and fluorescence imaging were used to identify PDGFRα expression within testicular tissue. Immunohistochemical analysis assessed the co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 in testicular cells. Results: Genotyping confirmed the heterozygous status of the mice, which is crucial for studies due to the embryonic lethal phenotype observed in homozygotes. Histological and fluorescence imaging revealed that PDGFRα+ cells were primarily located in the interstitial spaces of the testis, specifically within Leydig cells and peritubular myoid cells (PMCs). Immunohistochemical results showed PDGFRα co-localization with c-Kit and ANO-1 in Leydig cells and a complete co-localization with TASK-1 in both Leydig cells and PMCs. Conclusions: The findings demonstrate specific expression of PDGFRα in Leydig cells and PMCs in adult testicular tissue. The co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 suggests complex regulatory mechanisms, possibly influencing testicular function and broader physiological processes.

태생 경골어류, 망상어(Ditrema temmincki)의 초기생식소 형성 및 성분화 (Early Gonadogenesis and Sex Differentiation in the Viviparous Teleost, Ditrema temmincki)

  • 이정식;이영돈
    • 한국수산과학회지
    • /
    • 제29권1호
    • /
    • pp.35-43
    • /
    • 1996
  • 망상어, Ditrema temmincki이 시원생식세포의 출현, 원시생식소와 초기생식소의 형성, 정소와 난소의 분화 및 체내자어의 성비조성을 조직학적으로 조사하였다. 시원생식세포는 부화전 배의 초기소화관과 등쪽 체벽사이의 섬유성 간충직에서 처음 식별되었다. 부화후부터 전장 4.0mm 까지 소화관과 체벽사이의 섬유성 간충직에 고르게 분포하던 시원생식세포들은 간충직이 등쪽 체벽으로 부터 분리되는 전장 5.0 mm 시기를 전후해서 간충직의 후방으로 이동하여 원시생식소를 형성하게 된다. 초기생식소 형성과정 동안 정소와 난소의 분화는 생식세포와 체세포의 배열 상태에 의하여 구분되며, 전장 10.0mm 부터 생식소는 외부형태에 의하여 정소와 난소로 구분되는데, 정소는 한쌍으로 분리된 형태이고 난소는 후반부가 융합된 형태이다. 정소의 분화는 체내자어의 크기가 전장 25.0mm를 전후해서 정소에 곡정세관의 조직상이 나타나고, 전장 30.0mm를 전후해서 수정관이 형성되며, 전장 45.0 mm를 전후해서 외부형태와 내부 구조적으로 성어와 유사한 정소로 분화된다. 난소의 분화는 체내자어의 크기가 전장 30.0mm를 전후해서 난소습곡과 난소강의 형성이 명확하며, 전장 60.0mm를 전후해서 외부형태와 내부 구조적으로 성어와 유사한 난소로 분화된다. 체내자어의 출산시 전장은 63.0mm 전후이고, 이때 정소와 난소에는 각각 정원세포와 염색인기 단계의 생식세포를 보유하며, 암 : 수 성비는 약 1.65 : 1이었다. 망상어의 성은 자웅이체이며, 성분화 양식은 분화형에 속한다.

  • PDF

소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화 (DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos)

  • 고응규;김종무;김동훈;차병현;황성수;양병철;임기순;김명직;민관식;성환후
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.33-38
    • /
    • 2008
  • DNA 메틸화는 조직특이적인 유전자 조절에 관여하고, 정상적인 배 발달에 필수적이다. POU5F1은 octamer-binding transcription factor 4 (Oct-4)를 encode하며, 초기 분화에 중요한 전사인자이다. 본 실험에서 소의 Oct-4가 조직특이적이고 발달의존적인 epigenetic 표지 인지를 검토하고자, 착상 전 수정란에서 Oct-4 전사산물과 상류 promoter 영역의 CpGs의 메틸화를 조사하였다. Oct-4 전사산물은 정자 그리고 2-cell에서 8-cell 수정란까지 낮은 수준으로 존재하지만, 상실배와 배반포에서 높게 검출되었다. 이러한 결과는 배 발달 과정의 상실배 단계에서 Oct-4의 de novo 발현이 시작됨을 의미한다. Oct-4 상류 promoter 영역에는 메틸화 가변 영역 (tissue-dependent differentially methylated region, T-DMR)이 존재한다. Oct-4 메틸화 가변 영역의 메틸화 상태는 정자, 성체 체조직과 난자에서 서로 다르고, 수정란으로부터 배반포 단계까지 변화하였는데, 이는 착상 전 초기 배 발달 과정에 active 메틸화와 탈메틸화가 일어남을 의미한다. 이상의 결과, Oct-4 유전자 상류 promoter 영역은 DNA 메틸화의 타깃이고, 그 메틸화 상태는 소 수정란 발달 동안에 다양하게 변화한다.

Expression Profiling of Genes involved in the Control of Pluripotency Using CDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Jai-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.18-24
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these candidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Expression Profiling of Genes involved in the Control of Pluripotency Using cDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Ji-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.12-21
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue using cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these condidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cell plasticity is in ongoing. These studies may further our understanding on the nature of the stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Ectopic Cervical Thymoma: A Case Report and Review

  • Park, Hyun Oh;Kim, Sung Hwan;Moon, Seong Ho;Yang, Jun Ho;Kang, Dong Hoon;Lee, Jeong Hee
    • Journal of Chest Surgery
    • /
    • 제50권4호
    • /
    • pp.312-315
    • /
    • 2017
  • In the embryo, the thymus originates from the third and fourth pharyngeal pouches and migrates from the superior neck to the mediastinum. Ectopic cervical thymoma (ECT) is an extremely rare tumor that originates from ectopic tissue, and is caused by the aberrant migration of the embryonic thymus. Our patient was a 30-year-old woman who had a nodular lesion in the neck for several years. Ultrasonography and computed tomography were performed. She underwent surgery, and a histological examination resulted in a diagnosis of type AB thymoma. Herein, we report a case of ECT that was resected through a transcervical approach.