• Title/Summary/Keyword: embryogenic callus

Search Result 218, Processing Time 0.021 seconds

Expression of Porcine Epidemic Diarrhea Virus Spike Gene in Transgenic Carrot Plants

  • Kim, Young-Sook;Kwon, Tae-Ho;Yang, Moon-Sik
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • This study was carried out to obtain basic information for possibility of oral vaccine in carrot using Agrobacteruim -mediated transformation system. The epitope region of porcine epidemic diarrhea virus (PEDV) spike gene which is classified as a member of the Coronaviridae and causes an acute enteritis in pigs was successfully expressed in carrot (Daucus carota) using the Agrobacterium-mediated transformation system. Hypocotyl segments of in vitro germinated plantlets were infected with Agrobacteriun tumefaciens LBA 4404 harboring PEDV spike gene. Embryogenic callus (EC) was induced on MS selection medium with 1 mg/L 2,4-D, 50 mg/L kanamycin and 300 mg/L cefotaxime after 45 days of culture. Subcultured ECs on MS selection medium without 2,4-D were converted to somatic embryos (SE) of various stage; globular, heart and torpedo stage. Putative transgenic embryos were selected on MS medium with 50 mg/L kanamycin and 300 mg/L cefotaxime. Regenerated plantlets from transformed SE were induced on MS medium containing 50 mg/L kanamycin after 30 days of culture. Genomic PCR confirmed the integration of PEDV spike gene into nuclear genome of carrot and northern blot analysis demonstrated the expression of PEDV spike gene in transgenic carrot.

  • PDF

Improved Micropropagation of Root Chicory, Cichorium intybus L. var. sativus.

  • Lim, Jung-Dae;Yang, Deok-Chun;Lee, Hyeon-Yong;Kim, Jong-Dai;Lee, Jin-Ha;Sung, Eun-Soo;Yu, Chang-Yeon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • The establishment of an efficient protocol for plant regeneration and micropropagation from leaf explant cultures of Chicory, Cichorium intybus L. var. sativus. is reported. Callus formation rate appeared 100% from explant in all growth regulators, but calli formed in the prensence of naphthaleneacetic acid (NAA) were appeared very compact and non-embryogenic state. The regenerated shoots were obtained from leaf explant cultures on solid MS medium containing different concentrations of cytokinins and auxin. The highest number of shoots (5.7) per explant and shoot growth (2.8cm) was obtained on MS medium containing 0.1 mg BAP L$^{-1}$ and 0.1 mg NAA L$^{-1}$ . Indole acetic acid was the most suitable auxin for root formation among three auxins tested. 2,4-D had no effect on shoot and root formation.

  • PDF

Effents of Plant Explant Position of Miscanthus and Medium Supplements on Callus Induction (억새(Miscanthus spp.) 식물재료와 배지 첨가물질이 캘러스 형성에 미치는 영향)

  • Kim, Kwang-Soo;Kwon, Da-Eun;Lee, Ji-Eun;Cha, Young-Lok;Moon, Youn-Ho;Song, Yeon-Sang;Kang, Yong-Ku
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.54-54
    • /
    • 2018
  • 억새(Miscanthus spp.)는 우리나라 등 동아시아가 원산이며 바이오매스량이 많아 바이오에너지 원료작물로서 잠재성이 크기 때문에 2세대 바이오에탄올 생산 원료로 주목을 받고 있고, 축산깔개 및 토양개량제 등으로도 이용되고 있다. 미국과 유럽 등에서는 생태계 교란 방지를 위해 4배체 물억새(M. sacchariflorus)와 2배체 참억새(M. sinensis)의 종간 교잡 이질 3배체인 불임성 억새(M. x giganteous)을 주로 재배하고 있으나, 단일 유전형의 품종으로 병해충과 자연재해에 취약하여 다양한 억새 품종의 개발이 시급한 실정이다. 본 연구는 억새를 재료로 하여 반수체 및 배수체 확보를 통한 배수성 별 특성 평가와 함께 기내배양을 통해 탈분화 및 재분화 시스템을 구축하여 억새의 육종 효율을 높이기 위해서 실시하였다. 억새 종자로부터 캘러스의 유도는 MS배지와 N6배지에 1mg/L 2.4-D를 첨가하였을 때 비배발생 캘러스(nonembryogenic callus)가 유도되었고, N6배지에 3~5 mg/L 2,4-D를 첨가하였을 때 배발생 캘러스(embryogenic callus)가 발생하였다. MS배지보다는 N6배지에서 캘러스 유도율이 높았으며, 식물생장조절제로 2,4-D와 BA 조합처리 보다 2,4-D 단용 처리하였을 때 캘러스 유도율이 더 높았다. 억새 종에 따른 캘러스 유도율은 물억새가 25.2~49.3%, 참억새는 30.3~52.0%였고 거대억새는 62.6~81.1%로 나타났다. 억새 신초 및 줄기로부터의 캘러스 유도율은 물억새가 4.4~17.2%, 참억새는 1.8~7.7%, 거대억새는 15.3~19.9%로 나타나 종자에 비해 매우 낮았다. 미성숙화기로부터의 캘러스 유도는 억새 종에 따른 차이가 없었으며, 3mg/L 2,4-D 첨가 배지에서 캘러스 유도율이 비교적 낮았고(60~80%), 1mg/L와 5mg/L의 2,4-D가 첨가된 배지에서 캘러스 유도율이 높게(90~95%) 나타났다.

  • PDF

Improving Corsican pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology and germination

  • Wtpsk, Senarath;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.61-62
    • /
    • 2003
  • Clonal propagation of high-value forest trees through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Several factors limit commercialization of SE for Corsican pine, including low initiation rates, low culture survival, culture decline causing low or no embryo production, and inability of somatic embryos to fully mature, resulting in low germination and reduced vigour of somatic seedlings. The objective was to develop a Corsican pine maturation medium that would produce cotyledonary embryos capable of germination. Treatments were arranged in a completely randomized design. Data were analyzed by analysis of variance, and significant differences between treatments determined by multiple range test at P=0.05. Corsican pine (Pinus nigra var. maritima) cultures were initiated on modified !P6 medium. Modifications of the same media were used for culture multiplication and maintenance. Embryogenic cultures were maintained on the same medium semi solidified with 2.5 g/l Gelrite. A maturation medium, capable of promoting the development of Corsican pine somatic embryos that can germinate, is a combination of iP6 modified salts, 2% maltose, 13% polyethylene glycol (PEG), 5 mg!l abscisic acid (ABA), and 2.5 g/l Gelrite. After initiation and once enough tissue developed they were grown in liquid medium. Embryogenic cell suspensions were established by adding 0.951.05 g of 10- to 14-day-old semisolid-grown embryogenic tissue to 9 ml of liquid maintenance media in a 250ml Erlenmeyer flask. Cultures were then incubated in the dark at 2022$^{\circ}$C and rotated at 120 rpm. After 2.53 months on maturation medium, somatic embryos were selected that exhibited normal embryo shape. Ten embryos were placed horizontally on 20 ml of either germination medium ($\frac{2}{1}$strength Murashige and Skoog (1962) salts with 2.5 g/l activated charcoal) or same medium with copper sulphate adjusted to 0.25 mg/1 to compensate for copper adsorption by activated carbon. 2% and 4% maltose was substituted by 7.5% and 13% PEG respectively to improve the yield of the embryos. Substitution of' maltose with PEG was clearly beneficial to embryo development. When 2% of the maltose was replaced with 7.5% PEG, many embryos developed to large bullet-shaped embryos. At latter stages of development most embryos callused and stopped development. A few short, barrel-shaped cotyledonary embryos formed that were covered by callus on the sides and base. When 4% of the maltose was removed and substituted with 13% PEG, the embryos developed further, emerging from the callus and increasing yield slightly. Microscopic examination of the cultures showed differing morphologies, varying from mostly single cells or clumps to well-formed somatic embryos that resembled early zygotic embryos only liquid cultures with organized early-stag. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also tested. Seedling conversion and growth were highly related to the quality of the germinant at the time of planting. Germinants with larger shoots, longer, straighter hypocotyls and longer roots performed best. When mature zygotic embryos germinate the root emerges, before or coincident with the shoot. In contrast, somatic embryos germinate in reverse sequence, with the cotyledons greening first, then shoot emergence and then, much later, if at all, the appearance of the root. Somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed.

  • PDF

Establishment of suspension culture condition for embryogenic callus proliferation and somatic embryo development of Kalopanax septemlobus (음나무 배발생 캘러스의 증식 및 체세포배 발달을 위한 액체 현탁 배양조건 확립)

  • Kim, Sun-Ja;Moon, Heung-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • This study was conducted to establish the optimal suspension culture system for both the propagation of embryogenic cells (ECs) and the induction of somatic embryos (SEs) of Kalopanax septemlobus. The proliferation rate of ECs was reduced as the inoculum density was increased; the highest rate was obtained when 0.1 g/100 ml of cells was initially inoculated. According to the analysis of cell growth pattern and cell growth cycle (G1, Sand G2/M), the cell growth started in 5 days culture initiation, grew rapidly until 15 days and then decreased gradually. Distinctive changes of the cell growth cycle by the culture periods was also observed; the growth cycle was doubled from initial 5.6% to 11.7% of S stage in 5 days culture and then reached in stable stages again. Therefore, the results indicated that a 15-day-cycle was the optimal culture period for the propagation of the ECs through the suspension culture. Furthermore, the cell inoculum density was also important for the induction of SE; more than 65% of SEs at the torpedo stage was induced by using the low level of cell inoculum (0.5 g/L), while the higher inoculum densities were rapidly reduced the proportion of SEs at that stage. Although the higher inoculum density delayed the development of SE, it did not affect the proportion of SEs at the globular and heart stage. In conclusion, this study showed that the suspension culture of the Kalopanax septemlobus ECs through the control of inoculum density was an efficient way for both the propagation of ECs and the induction of SEs, suggesting that the development of this system might help to reduce the culture period for the somatic embryo production.

Establishment of a transformation protocol combination particle bombardment with Agrobacterium tumefaciens in different zoysiagrass cultivars (유전자총과 아그로박테리움을 이용한 여러 가지 한국 잔디류의 형질전환체계 확립)

  • Kim Jong-Bo;Kim Kyong-Duck;Park Dae-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • In this report, several factors such as infection time and concentration of bacterial suspension, influencing on transient gene expression in Agrobacterium-mediated transformation were evaluated. An appropriate concentration (O.D 600nm = 1.0-1.2) of bateria and 30 min of infection time showed a higher level of GUS expression. To improve transformation efficiency (TE), friable embryogenic calli (FEC) were bombarded by tungsten particles without plasmid DNA, and then co-cultivated with A. tumefaciens LBA4404 which contains pTOK233 super binary vector, carrying neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (hpt) and$\beta-glucuronidase$ (GUS) genes. Three days after co-cultivation with A. tumefaciens and particle bombardment, FEC cultures were transferred to the selection medium (SM: MS medium supplemented with BA 1mg/l, hygromycin 100mg/l, cefotaxime 250 mg/l and vancomycin 200mg/l). They were cultured for 2 weeks and then transferred to the second SM containing hygromycin 50mg/l, cefotaxime 200 mg/l and vancomycin 100mg/l. Later, stable GUS expression was detected 4 to 6 weeks after transfer to the SM. Further, TE from Agrobacterium-mediated transformation after particle bombardment increased to about 3-folds compared with Agrobacterium-mediated transformation without particle bombardment. In the present study, we established an efficient transformation protocol of zoysiagrass by using A. tumefaciens in the combination with particle bombardment for the first time.

High frequency Somatic Embryogenesis and Plant Regeneration in Tissue Cultures of korean Cultivar Sweet Potatoes (체세포배발생에 의한 한국 고구마 품종의 고빈도 식물체 재분화)

  • 민성란;유장렬;노태홍;김칠현;주정일
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.3
    • /
    • pp.157-160
    • /
    • 1994
  • Culture conditions for high Sequency somatic embryogenesis and plant regeneration in tissue cultures of sweet potato of two Korean cultivars 'Puyojaerae' and 'Yulmi' are described. Shoot apical meristem explants (height 150 $\mu\textrm{m}$; base: 350 $\mu\textrm{m}$) were cultured on MS medium supplemented with 1 mg/L 2,4-D. After 6 weeks of culture, greater than 80% of the survived explants produced embryogenic calli. When transferred onto MS medium with 0.1 mg/L each of 2,4-D and kinetin, the calli gave rise to somatic embryos at frequencies of 71% ('Puyojaerae') and 63% ('Yulmi'), respectively: When somatic embryos at various developmental stages measured in length were transversely cut into two halves and cultured on MS medium with 1 mg/L 2,L-D, the upper halves produced secondary embryos more frequently than the lower ones, and halves of somatic embryos less than 1 mm in length had a higher competence for secondary embryo formation than longer ones of either cultivar. However 'Puyojaerae' somatic embryo halves showed a higher frequency of secondary embryo formation than 'Yulmi' ones on the whole. Upon transfer onto MS basal medium, most of the primary and secondary somatic embryos underwent development into plantlets. The plantlets were transplanted to potting soil and grown to maturity in a phytotron. The overall results suggest that the shoot apical meristem culture system for somatic embryo formation in sweet potato previously established by us (SABRAOJ 21: 93-101) may be applicable regardless of it genotypes.

  • PDF

Micropropagation and RAPD Analysis of Somaclonal Variants in Lavandula spica cv. Marino (라벤다의 기내증식과 RAPD에 의한 체세포 변이체 분석)

  • Li, Xian Ri;Seong, Eun-Soo;Kim, Il-Seop;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.2
    • /
    • pp.94-100
    • /
    • 1999
  • To establish the mass propagation system of Lavandula spica cv. Marino, shoot tip, node, internode and leaf segment cultures were carried out. RAPD was applied to detect the somaclonal variation. Callus induction was very high in the medium supplemented with 1 mg/l 2.4-D, 2 mg/l NAA. especially and combined with 0.05 mg/l BAP from leaves. Shoot formation was high with $2{\sim}4\;mg/l$ BAP or 4 mg/l BAP + 0.2 mg/l NAA from shoot tip. Shoot proliferation was 9.1 times in the $B_{5}$ medium with 0.5 mg/l BAP and 0.01 mg/l NAA. Root formation was improved in NAA, which was the concentration of 0.1 to 1 mg/l and 1 mg/l IAA. Nursery survival rate was enhanced over 90% and growth was looked good in the acclimation soil consisting of peatmoss : vermiculite : perlite (1:1:1, v:v:v). Randomly amplified polymorphic DNA banding patterns based on polymerase chain reaction (PCR) were used to assess the genetic variation in plants regenerated from in vitro culture.

  • PDF

Rapid Micmpmpagation of Pimpinella barchycarpa via Somatic Embryogenesis (참나물(Pimpinella barchycarpa)의 체세포 경발생에 의한 식물체 대량증식)

  • Moon, Heung-Kyu;Yoon, Yang;Lee, Seok-Gu
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.85-90
    • /
    • 1994
  • Attempts were made to regenerate plants from petiole explane of Forest Pimpinella barchycarpa via repetitive somatic embryogenesis. Effective induction of somatic emb교ogenesis was achieved on both MS and modified $B_{5}\;(mB_{5})$ media containing BA + 2,4-D or BA + 2,4-D + NAA under light condition (16-h photoperiod/day) cultures. The explants exposed to the ligt produced numerous somatic embryos while those kept under the dark did not form any on the same medium. Somatic embryos at different developmental stages were observed to arise within a individual explants. Plantlets could be regenerated on $mB_{5}$ basal medium or $mB_{5}$ containing 0.1 mg/L NAA Secondary adventive embryos were formed on the surface of the somatic embryos. Therefore, repetitive somatic embryogenesis could be achieved by secondary embryogenesis. Although the treatment of 2,4-D or NAA alone was effective in callus formation and growth, but not in induction of somatic embryogenesis. Some explants, cultured on NAA-containing media in darkness, produced only adventive roots. The embryogenic potential was maintained for two years when subcultured to BA and 2,4-D containing media with 5 weeks inteval. Regenerated plantlets were maintained on $mB_{5}$ or MS basal media for 4 to 6 more weeks and transferred to soil of an artificial mixture for acclimation. Most plantlets (more than 97%) survived, and grew without any deformity.

  • PDF

High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures

  • Oh, Myung-Jin;Na, Hye-Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk-Weon
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • Culture conditions were established for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Nymphoides coreana. Zygotic embryos formed pale-yellow globular structures and calluses at a frequency of 85.6% when cultured on half-strength Murashige and Skoog (MS) medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. However, the frequency of pale-yellow globular structures and white callus formation decreased slightly with an increasing concentration of 2,4-D up to 10 $mg\;l^{-1}$ with the frequency rate falling to 16.7%. Cell suspension cultures were established from zygotic embryo-derived calluses using half-strength MS medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. Upon plating onto half-strength MS basal medium, over 92.3% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted into potting soil and achieved full growth to an adult plant in a growth chamber. The high frequency plant regeneration system for Nymphoides coreana established in this study will be useful for genetic manipulation and cryopreservation of this species.