• Title/Summary/Keyword: embryogenic calli

Search Result 116, Processing Time 0.037 seconds

Somatic Embryogenesis and Plant Regeneration in Leaf Explant Cultures of Gentiana scabra var buergeri (용담(Gentina scabra var. buergeri)의 잎 절편 배양에서 체세포배발생에 의한 식물체 재분화)

  • 방재욱;이미경;정성현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.233-237
    • /
    • 1994
  • Plant regeneration system via somatic embryogenesis in leaf explant cultures of Gentiana scabra var. buergeri has been established. Leaf segments formed calli when cultured on MS medium supplemented with 0.5 mg/L 2,4-D and 2 mg/L BAP After transferred to SH medium supplemented with 0.5 mg/L 2,4-D, 2 mg/L CPA and 0.5 mg/L kinetin, the callus became embryogenic. The embryogenic callus was subcultured every 3 to 4 weeks. Upon transfer onto SH basal medium the embryogenic callus gave rise to numerous somatic embryos, which subsequently developed into plantlets. The regenerated plants were potted in an artificial soil with mixture (peatmoss : pearlite : vermiculite : 2 : 1 : 1) and transplanted to the soil after kept under a high humidity for two weeks. A total of 78 plants out of 105 regenerated plants survived in the soil. Phenotypic variations in height, number of stems and the flowering time were observed in tile regenerated plants. Cytogenetical analyses showed no chromosomal variation.

  • PDF

Production of Herbicide-resistant Transgenic Plants from Embryogenic Suspension Cultures of Cucumber (오이의 배발생 현탁 배양세포로부터 제초제 저항성 형질전환 식물체 생산)

  • 우제욱;정원중;최관삼;박효근;백남긴;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To develop herbicide-resistant cucumber plants (Cucumis sativus L. cv Green Angle) embryogenic suspension cultures were co-cultured with Agrobacterium tumefaciens strain LBA4404 carrying a disarmed binary vector pGA-bar. The T-DNA region of this binary vector contains the nopalin synthase/neomycin phosphotransferase Ⅱ (npt Ⅱ) chimeric gene for kanamycin resistance and the cauliflower 35S/phosphinothricin acetyltransferase (bar) chimeric gene for phosphinothricin (PPT) resistance, After co-cultivation for 48 h, embryogenic calli were placed on maturation media containing 20 mg/L PPT. Approximately 200 putatively transgenic plantlets were obtained in hormone free media containing 40 mg/L PPT. Northern blot hybridization analysis confirmed the expression of the bar gene that was integrated into the genome of five transgenic plants. Transgenic cucumber plants were grown to maturity. Mature plants in soil showed tolerance to the commercial herbicide (Basta) of PPT at the manufacturer's suggested level (3 mL/L).

  • PDF

Plant Regeneration from Cryopreserved Embryogenic Cell Suspension Cultures of Cucumber (초저온 보존된 오이 배발생세포 현탁배양으로부터 식물체 재분화)

  • Kim, Seok-Won;In, Dong-Soo;Jung, Won-Joong;Woo, Je-Wook;Jung, Min;Yoo, Jang-Ryul
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.501-505
    • /
    • 1998
  • Conditions for high frequency plant regeneration from cryopreserved embryogenic cell suspension cultures derived from hypocotyl explants of cucumber (Cucumis sativus L.) are described. Cells cryoprotected with a mixture of 2 M DMSO and 0.4 M sucrose exhibited a regeneration frequency of 85%. However, cells cryoprotected with different concentrations of glycerol showed no regeneration after cryopreservation. Pretreatment of cells in a high osmotic medium was not necessary to the process. Upon transfer to MS medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, regenerated calli gave rise to numerous somatic embryos, then underwent development into plantlets.

  • PDF

High Frequency Somatic Embryogenesis and Plant Regeneration in Seedling Explant Cultures of Melon (Cucumis melo L.) (멜론(Cucumis melo L.) 유묘 절편으로부터 고빈도의 체세포배발생과 식물체 재분화)

  • 최필선;소웅영;조덕이;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Cotyledonary and hypocotyl explants of melon seedlings were cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) and benzyladenine (B.A).Up to 22% of cotyledonary explants and 7%, of hypocotyl explants, respectively: Produced somatic embryos through intervening two types of calli: bright yellow compact (BYC) callus and pale-yellow compact (PYC) callus. BYC callus was capable of producing somatic embryos at initial culture, but it became necrotic as subrulhues proceeded. In contrast UC callus was incapable of producing somatic embryos during initial culture (first 6 weeks), but it became bright-yellow friable (BYF) callus with forming a few globular embryos after 2 months of subculture, indicating that the callus turned embryogenic. The embryogenic capacity of BYF maintained for over one year when the callus was sucultured at 4-week interval. Upon transfer onto MS basal medium the callus gave rise to numerous somatic embryos and subsequently converted to plantlets. Plantlets were transplanted to potting soil and grown to maturity in the phyotron.

  • PDF

Hormonal Requirements Induced Different Regeneration Pathways in Alhagi graecorum

  • Hassanein, A.M.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Hormonal requirements inducing different regeneration pathways with particular emphasis on somatic embryo-genesis in Alhagi graecorum were studied. While combination of 0.5 $\mu{M}$ 2,4-dichlorophenoxyacetic acid (2,4-D), 2.5 $\mu{M}$ 6-benzylaminopurine (BAP) and 5 $\mu{M}$ 1-naphthaleneacetic acid (NAA) in MS medium induced callus formation and callus maintenance from internodal explants, each alone or in combination with other induced distinct regeneration pathway. Adventitious bud formation was induced on MS medium supplemented with 2.5 $\mu{M}$ BAP. It was improved when 2.5 $\mu{M}$ BAP was used in combination with 5 $\mu{M}$ NAA. MS medium containing 0.5 $\mu{M}$ 2,4-D or 5 $\mu{M}$ NAA induced the formation of abnormal direct somatic embryos. While increase of 2,4-D concentration (1.125-9) resulted in the formation of viable embryogenic mass, increase of NAA did not change its effect. NAA should be used in combination with 2,4-D even at low concentration (0.5 $\mu{M}$) to form embryogenic mass. In A. gaecorum, the role of 2,4-D as trigger of somatic embryogenesis and BAP as trigger of adventitious bud formation was deduced, but for maximum yield certain auxin-cytokinin ratio should be applied. Embryogenic masses characterized by high water content, low peroxidase activity, and low number of peroxidase and glutamate oxaloacetate transaminase bands in comparison with calli obtained under conditions stimulating adventitious bud formation. The resulted differential gene expression, which could be detected by native-PAGE patterns, could be used as marker for organogenic pathway in A. graecorum.

Embryogenic cell suspension culture and plant regeneration in zoysiagrass (Zoysia japonica Steud) (한국들잔디 배아세포의 부유배양과 식물체 재생)

  • Fang, Wenjuan;Han, Liebao;Qi, Chunhui;Li, Deying;Park, Tae-Yun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.345-352
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica Steud) is a warm season turfgrass species widely used for sports field and golf courses. Many cultivars are propagated through vegetative methods. This study was conducted to develop an optimum culture medium and culture conditions for embryogenic callus induction and plant regeneration, and to establish a cell suspension culture system for use in zoysiagrass breeding and propagation. The results indicated that adding $Cu^{++}$ at 2.5 mg $L^{-1}$ to the induction medium was optimum for callus induction. Increasing the numbers of sub-culture cycles improved the quality of calli. The optimum dosage for cell suspension culture ranged from 2.5 to 10 mL. The embryogenic callus suspension used in this study had a plant regeneration rate of 58%.

Genetic Transformation of Sweet Potato by Particle Bombardment (Particle Bombardment에 의한 고구마의 형질전환)

  • 민성란;정원중;이영복;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.329-333
    • /
    • 1998
  • $\beta$-Glucuronidase (GUS) gene of Escherichia coli was introduced into sweet potato (Ipomoea batatas (L.) Lam.) cells by particle bombardment and expressed in the regenerated plants. Microprojectiles coated with DNA of a binary vector pBI121 carrying CaMV35S promoter-GUS gene fusion and a neomycin phosphotransferase gene as selection marker were bombarded on embryogenic calli which originated from shoot apical meristem-derived callus and transferred to Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 100 mg/L kanamycin. Bombarded calli were subcultured at 4 week intervals for six months. Kanamycin-resistant calli transferred to MS medium supplemented with 0.03 mg/L 2iP, 0.03 mg/L ABA, and 50 mg/L kanamycin gave rise to somatic embryos. Upon transfer to MS basal medium without kanamycin, they developed into plantlets. PCR and northern analyses of six regenerants transplanted to potting soil confirmed that the GUS gene was inserted into the genome of the six regenerated plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the vascular bundle and the epidermal layer of leaf, petiole, and tuberous root.

  • PDF

Factors Affecting Callus Culture and Plant Regeneration in Kentucky Bluegrass (켄터키 블루그래스에 있어서 캘러스 배양 및 식물체 재분화에 미치는 요인의 영향)

  • Lee, K.W.;Lee, S.H.;Lee, D.G.;Woo, H.S.;Kim, D.H.;Choi, M.S.;Won, S.H.;Seo, S.;Lee, B.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1067-1074
    • /
    • 2005
  • In order to optimize tissue culture conditions of Kentucky bluegrass(Poa pratensis L.), effects of culture medium supplements, media and cultivars on embryogenic callus induction and regeneration of plants were investigated. MS medium containing 3mg/L 2,4-D and 0.1mg/L BA was optimal for embryogenic callus induction from mature seeds. The highest plant regeneration frequency(57.7%) was observed when the embryogenic calli were cultured on N6 medium supplemented with 1mg/L 2,4-D and 3mg/L BA. Among several basic media, MS and N6 medium were optimal for callus induction and plant regeneration, respectively. Genotype was an important factor in plant regenerability. ‘Newport’ showed to have higher regeneration frequency of 53.4%. Regenerated plants were grown normally when shoots transplanted to the soil. A short tissue culture period and high-frequency regeneration system would be beneficial for molecular breeding of Kentucky bluegrass through genetic transformation.

Regeneration of Fertile Transgenic Rice Plane from a Korean Cultivar, Nakdongbyeo (한국 재배종 낙동벼에서 임성 형질전환식물체의 재분화)

  • Soo In LEE;Hyun Jin CHUN;Chae Oh LIM;Jeong Dong BAHK;Moo Je CHO
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 1995
  • Rice is one of the most successful monocot in regenerating fertile and genetically stable transgenic plants. However there is no report of a rice line developed in Korea that can be used for regeneration of fertile and genetically stable transformants. In this paper we first demonstrate that a Korean variety Nakdongbyeo, is suitable to obtain transgenic rice plants. Protoplasts from embryogenic suspension cultures were co-transformed with HPT (hygromycin phosphotransferase) and GUS ($\beta$-glucuronidase) genes in separate plasmids in the presence of PEG (polyethylene glycol). In 5 independent experiment, the average frequency of calli showing hygromycin resistance were 1.73%. Plantlets were regenerated from the Hy $g^{R}$ calli. The average efficiency of plantlet regeneration was apprbximately 27%. Based on the GUS activities of hygromycin resistant calli, ca.35% of the resistant calli carried active GUS genes. The R0 transgenic plantlets were grown to maturity and Rl seeds were obtained. By examining the in siぉ activity of GUS in Rl seeds and seedlings, we confirmed that the GUS transgene driven by a CaMV 35S (cauliflower mosaic virus) promoter showed proper expression patterns. We also confirmed Mendelian segregation of the HPT transgene in the Rl generation.n.

  • PDF

Establishment of Plant Regeneration from Apical Meristem of Sweetpotato (고구마 정단분열조직 유래 식물체 재분화 조건 확립)

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Byeong-Choon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.233-236
    • /
    • 2006
  • This study was conducted to investigate somatic embryogenesis capacity using callus derived from bud meristems in sweetpotato. Shoot apical meristem explants $(height:150{\mu}m;base:\;350{\mu}m)$were cultured on MS medium supplemented with 1 mg/L 2/4-D. Embryogenic callus were observed in five cultivars when their shoot apices were cultured on MS medium supplements with 1 mg/L 2,4-D. After 6 weeks of culture, greater than 80% of the survived explants produced embryogenic calli and the calli gave rise to somatic embryos at frequencies of 72% (Yulmi), 60% (Shinhwangmi), 78% (Geonmi), 70% (KoKei 14), 40% (Sinjami). The regenerated plants developed into whole plantlets after they were transferred onto the fresh hormon-free MS medium of 74% (Yulmi), 82% (Shinhwangmi), 86% (Geonmi), 74% (Kokei 14), 41% (Sinjami) respectively.