• 제목/요약/키워드: embossing process

검색결과 127건 처리시간 0.061초

핫 엠보싱 공정과 CMP 공정을 이용한 플라스틱 기판에 메탈 라인 형성 (Fabrication of metal line on plastic substrate by hot embossing and CMP process)

  • 차남구;강영재;박창화;임현우;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.655-656
    • /
    • 2005
  • In the future, plastic based system will play a crucial role in modem life, for examples, transparent display or disposable electronics and so on. In this paper, we introduced a new method to fabricate the metal line on the plastic substrate. Metal lines were fabricated by hot embossing and CMP process on PMMA (polymethylmethacrylate) substrates. A Si mold was made by wet etching process and a PMMA wafer was cut off from I mm thick PMMA sheet. A 100 nm thick Al was deposited on PMMA wafers. The Al deposited PMMA wafer and the Si mold carefully sandwiched which was directly imprinted by hot embossing. After imprinting process, a residual Al layer was removed by CMP process. Finally, we found the entire process may be very useful to fabricate the metal line on plastic substrates.

  • PDF

Thermal embossing 공정을 이용한 PDMS mold 제작에 관한 연구 (A study on PDMS mold fabrication using thermal embossing method)

  • 김동학;유홍진;김창교;장석원;김태완
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.223-226
    • /
    • 2004
  • 나노 패턴을 갖는 미세 구조물을 낮은 비용으로 생산하기 위해서는 플라스틱 재료를 이용하는 것이 필수적이고, 대량생산이 가능한 가공방법으로 사출성형 공정기술이 유망하다. 본 연구에서는 e-beam 리소그라피로 제작된 석영원판 내의 100-500nm크기의 선과 점 형상을 간단한 thermal embossing 공정을 이용하여 액상 PDMS를 고형화 시킨 후에 원판과 분리시켜 PDMS 몰드를 제작하였다. 실험결과, 원판에 있는 나노 크기의 다양한 패턴들은 PDMS 몰드에 균일하게 전사되었고, 이 몰드는 사출성형용 스탬퍼 제작에 유용하게 이용될 수 있을 것으로 사료된다.

  • PDF

마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작 (Fabrication of Hot Embossing Plastic Stamps for Microstructures)

  • 차남구;박창화;임현우;박진구;정준호;이응숙
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구 (A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide)

  • 김신;김종선;홍석관;김현종;윤경환;강정진
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

Seat recliner용 sector gear의 fine blanking에 관한 연구 (A study on properties of sector gear for seat recliner)

  • 김창호;강수호;이관영;남기우
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.99-105
    • /
    • 2010
  • This study was performed to solve the breaking problem in the fine blanking(FB) process of sector gears for car seat recliner using nickel chrome molybdenum steel(SNCM220) plate. The optimal design of embossing circle is changed to oval with labors' experiences and finite element analysis. The maximum principal stress and effective strain in a forming process are analyzed by commercial finite element software to solve the problems in embossing stage of FB process. As a result of FE analysis, the maximum principal stress in forming is lower than yield point of material. It is shown from experiments in the modified die that the formed gear does not break in embossing stage.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

Hot Embossing기술을 이용한 병렬 광접속용 고분자 광도파로 제작 (Fabrication of polymeric optical waveguides for parallel optical interconnection using hot embossing technique)

  • 최춘기;김병철;한상필;안승호;정명영
    • 한국광학회지
    • /
    • 제13권3호
    • /
    • pp.223-227
    • /
    • 2002
  • 병렬 광접속용 다중모드 고분자 광도파로를 제작하였으며, 도파로 구조는 LIGA 공정에 의해 제작된 니켈 성형 마스터에 의해 hot embossing기술을 이용하여 성형하였다. 도파로 크기가 48$\times$47$\mu\textrm{m}$$^{2}$인 다중모드 광도파로를 단순 2단계 공정에 의해 제작하였으며, 0.85$\mu\textrm{m}$과 1.3$\mu\textrm{m}$ 파장대역에서 측정한 다중모드 광도파로의 도파손실은 각각 0.38dB/cm와 0.66dB/cm이었다.

Focused Infrared Light를 이용한 롤투롤 핫엠보싱 (Focused-Infrared-Light Assisted Roll-to-Roll Hot Embossing)

  • 조정대;김우섭;김광영;최영만
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.199-203
    • /
    • 2017
  • Hot embossing techniques are used to engrave patterns on plastic substrates. Roll based hot embossing uses a heated roll for a continuous process. A heated roll with relief patterns is impressed on a preheated plastic substrate. Then, the substrate is cooled down quickly to prevent thermal shrinkage. The roll speed is normally very slow to ensure substrate temperature increase up to the glass transition temperature. In this paper, we propose a noncontact preheating technique using focused infrared light. The infrared light is focused as a line beam on a plastic substrate using an elliptical mirror just before entering the hot embossing roll. The mid range infrared light efficiently raises the substrate temperature. For preliminary tests, substrate deformation and temperature changes were monitored according to substrate speed. The experiments show that the proposed technique is a good possibility for high speed hot embossing.