• Title/Summary/Keyword: embedded surface

Search Result 707, Processing Time 0.034 seconds

Nanoliter Reactor Arrays for Antibiotic Study

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1709-1714
    • /
    • 2007
  • It is demonstrated in this study that the nanoliter reactor arrays with an inkjet printing, can be used for high throughput screen of antibiotic function. As a model antibiotic, gramicidin was used in this study. The gramicidin embedded lipid vesicles were immobilized on the surface in the nanoliter reactor structure with control of the volume in the nanoliter reactor. By dispensing acidic drops into the reactor, the gramicidin function was monitored. The technique developed in this research also has a great potential to be used for discovery of drugs.

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

Analysis of stripline structure(resonator) in LTCC system (LTCC system 에서의 Stripline구조 특성 연구)

  • 유찬세;이우성;강남기;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.69-73
    • /
    • 2002
  • In ceramic systems, many components including embedded passives and TRL(transmission line) are used for composition of 3-dimensional circuit. So the exact analysis on this components, As for the TRL's, material properties including electrical conductivity of metal, loss factor and effective dielectric constant of dielectric material and geometrical factors like roughness of surface, vias, dimension of stripline structure have a large effect on the charactersistics of transmission lines. In this research, of effect of material and geometrical factors on the characteristics of stripline structure is analyzed and quantified by simulation and measurement.

  • PDF

Optical Scattering as a Probe of Local Field Effect in Micron-sized Cds Spheres

  • 김성규;Alan L. Huston;Anthony J. Campillo
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.96-101
    • /
    • 1995
  • The optical properties of individual 3-to 14-micron diameter CdS crystalline spheres embedded in poly(methyl methacrylate) were studied using elastic scattering. The presence of well defined sharp peaks in the 550 to 600 nm elastic scattering spectra confirmed that each microcrystal acts as an optical cavity with cavity quality factors exceeding 104. Such natural resonator microcrystals should lead to greatly enhanced local field effects near the surface of CdS, quantum electrodynamic modification of optical transition rates of nearby species and altered photochemistry. Absorptive heating following high intensity laser irradiation was found to induce a transient washout of the high Q modes.

Comparative Biocompatibility of Metal Implants in Connective Tissue of Abdominal Wall of the Mouse (마우스의 복벽에서 결합조직에 대한 금속 이식체의 생체적합성 비교)

  • 김국렬;이민호;김병일;민병운;김명훈;최은상;조현욱
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • The purpose of this study is to compare the biocompatibility of commercial purity Ti, Ti-6AI-4V and Ti-6AI-7Nb alloy specimens with and without surface treatment in mouse abdominal connective tissue in vivo. Each metal was implanted into specific abdominal subdermal tissue site of female mouse. After 4 weeks, the implants were removed and abdominal tissues were fixed, dehydrated and embedded in glycol methacrylate resin. And the tissues were histologically prepared for microscopical evaluation. It was characterized by the presence of connective tissue with fibrous capsule surrounding the implant. The fibrous tissue surrounding the implant was studied to determine the biocompatibility of implanted metals. The average thickness of the fibrous capsule formed around the implant was much thinner for the hydrogen peroxide added hydrochloric acid solution-treated specimen than for the others. The results of this evaluation indicate that modification of the surface properties of titanium and titanium alloy implants changes the biological properties in the abdominal connective tissue. In conclusion, these observations suggest that the proper surface treatment performed in the study is effective for the improvement of biocompatibility.

Structure-From-Motion Approach to the Reconstruction of Surfaces for Earthwork Planning

  • Nassar, Khaled;Jung, Young-Han
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • The reconstruction of surfaces from unorganized point clouds can provide very useful information for construction managers. Although point clouds are generally created using 3D scanners, they can also be generated via the structure-from-motion technique using a sequence of images. Here we report a novel surface reconstruction technique for modeling and quantifying earthworks that can be used for preliminary planning, project updates and estimating of earthwork quantities, as well as embedded planning systems in construction equipment. The application of structure-from-motion techniques in earth works is examined and its advantages and limitations identified. Data from 23 earthwork excavation construction sites were collected and analyzed. 3D surface reconstructions during the construction phase were compared to the original land form. Similar experiments were conducted with piles of earth and the results analyzed to determine appropriate ranges of use for structure-from-motion surface reconstructions in earthwork applications. The technique was found to be most suited to pile of materials with volumes less than 2000 m3. Piles up to 10 m in height and with base areas up to $300m^2$ were also successfully reconstructed. These results should be of interest to contractors seeking to utilize new technology to optimize operational efficiency.

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Study on Surface Scratch Characteristics of Hard Disk by Ramp Loading Method Using a Scratch Tester (스크래치 테스터의 Ramp Loading 방법을 이용한 하드디스크의 표면 스크래치 특성에 관한 연구)

  • Lee R.J.;Kim D.E.;Kang T.S.;Cho Y.B.;Cho K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.484-487
    • /
    • 2005
  • In order to get the surface characteristics of the HDI of HDD, the surface damage mechanisms must be totally understood. Particle contamination in hard disk drives is a big concern in today's magnetic recording industry since they are major sources of reliability problems. Namely upon contact with the slider or a contaminant particle, the disk may be scratched or the particles may be embedded into the disk surface. In this work, comparison of scratches was made between those found on actual hard disks and those created using a scratch tester. It was found that ramp loading method is an effective way to make similar scratches as the actual ones. From the ramp loading condition, the relationship between the pressure and the scratch track width could be identified.

  • PDF

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Controlling the surface energy and electrical properties of carbon films deposited using unbalanced facing target magnetron sputtering plasmas

  • Javid, Amjed;Kumar, Manish;Yoon, Seok Young;Lee, Jung Heon;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.231.1-231.1
    • /
    • 2015
  • Surface energy, being an important material parameter to control its interactions with the other surfaces plays a key role in bio-related application. Carbon films are found very promising due to their characteristics such as wear and corrosion resistant, high hardness, inert, low resistivity and biocompatibility. The present work deals with the deposition of carbon films using unbalanced facing target magnetron sputtering technique. The discharge characteristics were studied using optical emission spectroscopy and correlated with the film properties. Surface energy was investigated through contact angle measurement. The ID/IG ratio as calculated from Raman spectroscopy data increases with the increase in power density due to the higher number of sp2 clusters embedded in the amorphous matrix. The deposited films were smooth and homogeneous as observed by Atomic force microscopy having RMS roughness in the range of 1.74 to 2.25 nm. It is observed that electrical resistivity and surface energy varies in direct proportionality with operating pressure and has inverse relation with power density. The surface energy results clearly exhibited that these films can have promising applications in cell cultivation.

  • PDF