• Title/Summary/Keyword: elliptical galaxies

Search Result 112, Processing Time 0.02 seconds

On the interpretation of color bimodality of extra-galactic globular clusters

  • Kim, Hak-Sub;Sohn, SangmoTony;Chung, Chul;Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • Globular cluster (GC) systems in most galaxies, particularly in ellipticals, show bimodal color distributions. Because broadband colors trace metallicity at old ages, this phenomenon has been commonly interpreted as bimodal metallicity distributions, implying the presence of two sub-populations in the globular cluster system within a galaxy. However, a new explanation has recently been proposed, in which the non-linear nature of color-metallicity relations induced by horizontal-branch stars can produce bimodal color distributions even from unimodal metallicity distributions. In this study, we put these two explanations to the test on the origin of color bimodality, using multi-band (U,B,V and I) photometry of globular clusters in NGC 1399, the central giant elliptical galaxy in Fornax galaxy cluster. We find significant changes in the morphology of color distributions when using different colors. The observation is also well reproduced by the Monte Carlo realization of GC color when a unimodal metallicity distribution and the theoretical non-linear color-metallicity relations are assumed. We discuss the implications regarding theories on galaxy formation and evolution.

  • PDF

Distribution of Baryonic Matter in Dark Matter Halos: Effect of Dynamical Friction

  • Bae, Yeong-Bok;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We studied the evolution of the two mass components system with NFW initial density distribution by direct integration of the Fokker-Planck equations. The low mass component is regarded the dark matter particles while the high mass component is assumed to be conglomerates of baryonic matter in order to depict the 'stars'. While the true mass ratio between these two types of particles should be extremely large, our adopted mass ratio is about 1000 beyond which the dynamical evolution and density distribution tend to converge. Since the dynamical evolution is dominated by the dynamical friction, the high mass component slowly moves toward the central part, and eventually undergoes the core collapse. The system reaches the core-collapse at about $7.1{\times}10^{-3}$ $t_{fh}$ in NFW models, where $t_{fh}$is the dynamical friction time at half-mass radius. The distribution of the high mass component is well fitted by the Sersic profiles or modified Hubble profile when the mass segregation is established. From these results, the surface brightness of elliptical galaxies may be explained by the high mass component experiencing dynamical friction by the dark matter particles. In order for the mass segregation to be effective within Hubble time, the mass of the luminous component should be greater than $10^5M_{\bigodot}$.

  • PDF