• Title/Summary/Keyword: elliptic restricted three-body problem

Search Result 3, Processing Time 0.016 seconds

LOCATIONS OF OUT-OF-PLANE EQUILIBRIUM POINTS IN THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM UNDER RADIATION AND OBLATENESS EFFECTS

  • HUDA, IBNU NURUL;DERMAWAN, BUDI;WIBOWO, RIDLO WAHYUDI;HIDAYAT, TAUFIQ;UTAMA, JUDHISTIRA ARYA;MANDEY, DENNY;TAMPUBOLON, IHSAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.295-296
    • /
    • 2015
  • This study deals with the generalization of the Elliptic Restricted Three-Body Problem (ER3BP) by considering the effects of radiation and oblate spheroid primaries. This may illustrate a gas giant exoplanet orbiting its host star with eccentric orbit. In the three dimensional case, this generalization may possess two additional equilibrium points ($L_{6,7}$, out-of-plane). We determine the existence of $L_{6,7}$ in ER3BP under the effects of radiation (bigger primary) and oblateness (small primary). We analytically derive the locations of $L_{6,7}$ and assume initial approximations of (${\mu}-1$, ${\pm}\sqrt{3A_2}$), where ${\mu}$ and $A_2$ are the mass parameter and oblateness factor, respectively. The fixed locations are then determined. Our results show that the locations of $L_{6,7}$ are periodic and affected by $A_2$ and the radiation factor ($q_1$).

ON THE TRIANGULAR EQUILIBRIUM POINTS IN THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM UNDER RADIATION AND OBLATENESS EFFECTS

  • DERMAWAN, B.;HUDA, I.N.;WIBOWO, R.W.;HIDAYAT, T.;UTAMA, J.A.;MANDEY, D.;TAMPUBOLON, I.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.293-294
    • /
    • 2015
  • This work considers the elliptic restricted three-body problem under effects of radiation of the bigger primary, and an oblate spheroid for the smaller primary to mimic an exoplanetary system with a gas giant planet. Under the influences of both effects we look for the existence of the triangular equilibrium points and the influences of the radiation and oblateness on the locations and motion of the points. We set the system in a normalized rotating coordinate system and derive equations of motion for the third infinitesimal object. Our study shows that the effects modify the equilateral/isosceles triangle shape with respect to the primaries. The triangular points also have non-planar motion with period depending on the value of the planet oblateness.

An exosolar planetary system N-body simulator II

  • Hong, ChaeLin;van Putten, Maurice
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.3-47
    • /
    • 2018
  • We present a general N-body exasolar system simulator in anticipation of upcoming searches for exoplanets and even exomoons by next generation telescopes such as James Webb Space Telescope. For habitable zones, traditionally defined by temperature, we here address the essential problem of dynamical stability of planetary orbits. Illustrative examples are presented on P-type orbits in stellar binary systems, that should be fairly common as in Kepler 16b. Specific attention is paid to reduced orbital lifetimes of exoplanets in the habitable zone by the stellar binary, that is propoesed by Maurice van Putten (2017). Especially, we focused on a classic work of complex three-body problem that is well known by Dvorak(1986). We charge his elliptic restricted three-body problem to extend unrestricted three-body problem to look into dynamical motions in view of circumbinary planet, furthermore, we suggest that opposite angular orientation of the planet is relative to the stability of orbits. In here, counter-rotation case is relatively more faster than co-rotation case for being stable. As a result, we find that various initial conditions and thresholds to approach dynamical stability and unstability with unexpectable isolated islands over enormous parameter space. Even, superkeplerian effect of binary is important to habitability of the exoplanet and we can verify that superfaster binary doesn't effect on th planet and increases survivality of planet around the binary.

  • PDF