• Title/Summary/Keyword: elevation angle

Search Result 346, Processing Time 0.023 seconds

A case of oral rehabilitation using implant fixed prosthesis (skeletal class III malocclusion patient) (골격성 III급 부정교합을 가진 환자에서 임플란트 지지 고정성 보철을 이용한 구강회복 증례)

  • Minjung Kang;Minji Sun;Hong Seok Moon;Jong-Eun Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • When the patient with class III malocclusion needs extensive oral rehabilitation due to multiple missing teeth, accurate diagnosis, and careful analysis, such as the patient's occlusal relationship, facial changes, and evaluation of the temporomandibular joint are essential. Orthognathic surgery is often performed for aesthetic improvement, depending on the patient's chief complaint. If it is not possible due to certain circumstances, partial aesthetic improvement can be achieved through minimal elevation of the vertical dimension. As this patient may have unexpected issues, such as temporomandibular joint disorder, oral habits like bruxism, and masticatory muscle tension, it was determined whether the patient could adjust to a reversible temporary removable partial denture. After this, the maxillary implant-supported fixed prostheses and the mandibular fixed prostheses were used to achieve stable posterior support and to partially improve the maxillary anterior esthetics. The patient was satisfied with the results both aesthetically and functionally. The prognosis is expected to be good if regular check-ups are conducted.

Geographical Structure of View Point in the Landscape Experience on Mountain in Yangsan City (경관체함이 발생하는 조망점의 지리구조에 관한 연구;양산시 소재 산지를 대상으로)

  • Kang, Young-Jo;Cha, Young-Chae;Cha, Myeong-Sook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.75-84
    • /
    • 2008
  • The purpose of this research is to find the visual characteristics and geographic structure in a landscape of mountains in Yangsan City. In order to carry out this study, 40 view points of 6 mountains in Yangsan City were selected to experience the mountainscape. The results are as follows. The mountainscape of Yangsan City was confirmed from the view point to the object of view as ranging in middle distance reverse, the angle of elevation 11${\sim}13^{\circ}$ which give the impression of confronted to the mountain, and the horizontal angle 50${\sim}90^{\circ}$ which gives the impression of vastness. This shows that mountainscapes are perceived impressively when seeing the mountain with the meaning to feel the texture of the mountain as a confrontational relationship rather than a pictorial relationship. The geographic structure of the view point which occurs in scenes of impressive experience is classified into eight types and its characteristics are investigated. The first type is corridor, and it emerges in a long narrow linear structure made from the surrounding environment with buildings or street trees. The second is tunnel in which a vision and light hidden while passing underneath a bridge, high-level road, or inside a tunnel can be seen. Third, the maze is formed by the mountain shape. The hill spur emerges when the direction of traffic changes after turning the coner of a building or mountain edge. The hill ground emerges at the top of a hill slope. Next, parallel emerges when the observer and the mountain are in the same direction of process. Confrontation occurs when confronting an isolated mountain. Finally, the view point emerges when passing through major points such as a bridge or square and the boundary of a village or city. This research arranged visual conditions that create impressive mountainscapes. Geographic characteristics in terms of Types that make possible to experience mountainscapes were described. The results of this research will be basic data collected for the management and preservation of mountainscapes and for landscape effect evaluation. Furthermore, this research suggests theoretical evidence to preserve and manage geographic structures that create view experiences as well as to preserve the landscape in terms of view points.

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

Pain Recovery Pattern According to the Integrity after an Arthroscopic Rotator Cuff Repair (관절경하 회전근 개 봉합술 후 파열 정도에 따른 통증 회복 양상)

  • Kim, Ju-O;Sim, Sang-Don;Noh, Kyung-Hwan;Shon, Suk-June;Kim, Sul-Jun;Yang, Yun-Hyeok
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the pain recovery pattern according to the integrity and to analyze the factors affecting the progress and level of pain postoperatively. Materials and Methods: We examined 153 patients, who were treated with arthroscopic rotator cuff repair. 101 rotator cuff tears were full-thickness tear and 52 were partial tear. The mean follow up duration was 20 months (12~30 months). We evaluated the visual analogue scale, range of motion, ASES (American Shoulder and Elbow Surgeons), and UCLA (University of California at Los Angeles) scores preoperatively and postoperatively. We analyzed the pain recovery pattern between partial and full thickness tear using Student T-test and the factors affecting the progress and level of postoperative pain using multiple regression analysis. Results: The change patterns of visual analogue scale after arthroscpoic repair were similar regardless of the tear integrity. The VAS showed a continuous decreasing pattern, but increased at first 3 weeks postoperatively and at 7 weeks postoperatively, and then, decreased thereafter. The average VAS was ${\leqq}2$ points by postoperative 3 months. The factor affecting the pain score at 3 months was related to the preoperative limitation in forward flexion ($r^2=0.377$, p=0.021). Conclusion: There was no differences of the pain recovery pattern according to the integrity, and the factor affecting the progress of postoperative pain was preoperative angle of forward elevation. So, the appropriate preoperative rehabilitation protocol that can improve motions of the shoulder joint would help to improve the level of postoperative pain and functional recovery.

  • PDF

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.