• Title/Summary/Keyword: elevated tanks

Search Result 18, Processing Time 0.026 seconds

Seismic analysis and modeling of isolated elevated liquid storage tanks

  • Seleemah, Ayman A.;El-Sharkawy, Mohamed
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the seismic response of elevated broad and slender liquid storage tanks isolated by elastomeric or sliding bearings was investigated. The accuracy of predictions of SAP2000 vs. 3D-BASIS-ME programs was examined. A comparative study of the performance of base isolated tanks when isolation bearings are placed at the top or at the bottom of the supporting tower structure was conducted. It was found that base isolation is quite effective in reducing the earthquake response of elevated liquid storage tanks in which high reductions of base shear and shaft displacement were achieved. Modeling the isolated tanks in SAP2000 was very successful in producing results that are nearly identical to those of program 3D-BASIS-ME. Placing the isolators at the top of the shaft in elevated tanks proved to be much better than placing them at the bottom.

Soil interaction effects on sloshing response of the elevated tanks

  • Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.283-297
    • /
    • 2013
  • The aim of this paper is to investigate how the soil-structure interaction affects sloshing response of the elevated tanks. For this purpose, the elevated tanks with two different types of supporting systems which are built on six different soil profiles are analyzed for both embedded and surface foundation cases. Thus, considering these six different profiles described in well-known earthquake codes as supporting medium, a series of transient analysis have been performed to assess the effect of both fluid sloshing and soil-structure interaction (SSI). Fluid-Elevated Tank-Soil/Foundation systems are modeled with the finite element (FE) technique. In these models fluid-structure interaction is taken into account by implementing Lagrangian fluid FE approximation into the general purpose structural analysis computer code ANSYS. A 3-D FE model with viscous boundary is used in the analyses of elevated tanks-soil/foundation interaction. Formed models are analyzed for embedment and no embedment cases. Finally results from analyses showed that the soil-structure interaction and the structural properties of supporting system for the elevated tanks affected the sloshing response of the fluid inside the vessel.

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.

Damage states of yielding and collapse for elevated water tanks supported on RC frame staging

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, mprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.587-601
    • /
    • 2018
  • Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.

The Background of the Formation of the Elevated Water Storage Tank Landscape in the Western Region of Jeju Island (제주도 서부 지역 고가수조 경관의 형성배경)

  • Kim, Man-Kyu;Park, Jong-Chul;Lee, Seong-Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.6
    • /
    • pp.623-634
    • /
    • 2010
  • The elevated water storage tanks highly crowded in the western region in Jeju island is an important landmark of Jeju island. This study examines the reasons that the elevated water storage tanks appeared in a high density. After examination, this study found that the elevated water storage tanks formed under the influences of climate, hydrogeologic structure, soil, topography and land use. In particular, the elevated water storage tanks in Jeju are closely related to the crapping system with which water has to be supplied using sprinkler due to well drained soil and hydrogeological characteristics. The results of this study show that elevated water storage tank landscape in the western region of Jeju island is an agricultural landscape particularly made in the course of farmers' adaptation to the natural environment of Jeju island.

  • PDF

Analytical assessment of elevated tank natural period considering soil effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.223-234
    • /
    • 2016
  • The main purpose of current study is to find the soil effects on natural period of elevated tank. The coupled analytical method is used to assess in this study. The current study presented models which are capable to consider the soil dynamic stiffness changes and fluid- structure interaction effects on natural period of elevated tanks. The basic of mentioned models is extracted from elastic beam and lumped mass theory. The finite element is used to verify the results. It is observed that, external excitation can change the natural period of elevated tanks. Considering the increase of excitation frequency, the natural period will be decreased. The concluded values of natural period in case of soft and very soft soil are more affected from excitation frequency values. The high range of excitation frequency may reduce the natural period values. In addition it is observed that the excitation frequency has no significant effect on convective period compare with impulsive period.

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

Estimation of elevated tanks natural period considering fluid- structure- soil interaction by using new approaches

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • The analytical method is used to develop new models for an elevated tank to estimate its natural period. The equivalent mass- spring method is used to configure the developed analytical models. Also direct method is used for numerical verification. The current study shows that developed models can have a good estimation of natural period compared with concluded results of finite elements. Additional results show that, the dependency of impulsive period to soil stiffness condition is higher than convective period. Furthermore results show that considering the fluid- structure- soil interaction has remarkable effects on natural impulsive and convective periods in case of hard to very soft soil.

Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, Omprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.209-224
    • /
    • 2017
  • Elevated water tanks are considered as important structures due to its post-earthquake requirements. Elevated water tank on reinforced concrete frame staging is widely used in India. Different response reduction factors depending on ductility of frame members are used in seismic design of frame staging. The study on appropriateness of response reduction factor for reinforced concrete tank staging is sparse in literature. In the present paper a systematic study on estimation of key components of response reduction factors is presented. By considering the various combinations of tank capacity, height of staging, seismic design level and design response reduction factors, forty-eight analytical models are developed and designed using relevant Indian codes. The minimum specified design cross section of column as per Indian code is found to be sufficient to accommodate the design steel. The strength factor and ductility factor are estimated using results of nonlinear static pushover analysis. It was observed that for seismic design category 'high' the strength factor has lesser contribution than ductility factor, whereas, opposite trend is observed for seismic design category 'low'. Further, the effects of staging height and tank capacity on strength and ductility factors for two different seismic design categories are studied. For both seismic design categories, the response reduction factors obtained from the nonlinear static analysis is higher than the code specified response reduction factors. The minimum dimension restriction of column is observed as key parameter in achieving the desired performance of the elevated water tank on frame staging.

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.