• Title/Summary/Keyword: elements in particulate matter

Search Result 55, Processing Time 0.018 seconds

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

A study of particulate matters in Korea (우리나라 일부지역의 입자상 물질 농도에 대한 연구)

  • 손부순;공미연;박종안;양원호;김종오
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.24-35
    • /
    • 2003
  • Recent epidemiologic studies revealed that the concentration of air pollutants and fine particulated matter have some effects on health status and are associated with increased mortality and morbidity. The purpose of this study was to characterize background mass concentration of fine particle (PM2.5) and metallic composition from September 2001 to August 2002 in comparison with a medium city, Asan and metropolitan city, Seoul. Conclusively, proper management for fine particles was required in a medium city, Asan, considering the concentrations of metallic elements in fine particles in Asan were relatively higher than those in Seoul. The results were as followed. 1. Average mass concentrations of fine particles in Asan and Seoul were 37.70(${\pm}18.41{\;}{\mu}g/\textrm{m}^3$) and 5.83(${\pm}38.50$) ${\mu}g/\textrm{m}^3$, respectively. When the weather conditions were classified as normal and yellow-sand, measured average mass concentrations of fine particles in yellow-sand weather condition was significantly higher than those of normal weather condition in both cities (p<0.05). 2. Depending on seasons, measured average mass concentrations of fine particles in Asan and Seoul in spring were 47.76(${\pm}19.07$) ${\mu}g/\textrm{m}^3$m and 61.53 (${\pm}4.37$) ${\mu}g/\textrm{m}^3$, respectively. In summer, the average mass concentrations of fine particles in Asan and Seoul were 29.44(${\pm}9.85$) ${\mu}g/\textrm{m}^3$ and 25.42(${\pm}8.10$) ${\mu}g/\textrm{m}^3$, respectively. Especially, the concentration was the highest in spring and the lowest in summer among four seasons. 3. Average concentrations of manganese(Mn), iron(Fe), chromium(Cr), cadmium(Cd), lead(Pb) and silicon(Si) in fine particles in Asan were significantly higher in Seoul (p<0.05). Average concentration of Si in fine particle in Asan was statistically higher than that of Seoul during yellow -sand condition (p<0.05). 4. Considering the characterization of four seasons, average Pb concentration of fine particle in Asan is significantly higher than that of Seoul in spring(p<0.01). In summer, average Mn and Cr concentrations of fine particle in Asan is higher than those of Seoul (p<0.05). Average Mn, Fe. Cr and Si concentrations in fall (p<0.05), and average Mn, Fe, Cr, Pb, and Si concentrations in winter (p<0.05) in Asan were higher than those of Seoul, respectively. 5. Mass concentrations of each Mn, Fe, Cd and Si in fine particles were significantly correlated with both cities. In normal weather condition, Mn, Cu and Si concentrations are statistically significant in Asan, while Mn, Fe, Cu and Si concentrations are statistically significant in Seoul. Mn, Fe and Si concentrations in both cities were statistically significant during yellow-sand weather.

Han River Pollution Studies (한강의 오염도)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.24-45
    • /
    • 1972
  • The Han River is an important water source in Seoul and neighbouring districts, for public and industrial supply, and for agriculture and fishery. Nowadays, more than six million inhabitants are supplied withe water from this river. The total length of the river is 470km, and has 17 10$\^$9/㎥ an average annual flow. The hydrographic characteristics at Seoul are 653㎥/sec in an average flow, 4,608㎥/sec in the maximum average flow, and 201㎥/sec in the minimum average flow. These are influenced in some degree by snowmelt in early spring, and greatly by the flood during summer. For the pollution problems, the periods of low flow are critical ones. As a rule they occur around the months November through June. Nowadays, most of the sewage from towns and industries is discharged untreated. Apart from domestic and industrial sewages, there are some discharges of mineral matter by mines in the upriver region. In general, water quality of the Han River is kept very clean and healthy until Kwangnaru of the upper region of Seoul. A large pollution, however, is received in the downstream by the domestic and industrial sewages of Seoul. It can be seen that dissolved oxygen, COD and BOD$\sub$5/ diminish markedly, and the intensity of almost every water parameter of the river continues to increase. Comparison of the figures for 1971 derived from a sampling point 40km downstream of Kwangnaru leads to the conclusion that hardness, Ca and Mg were no changed; alkalinity, Si and soluble- Fe were slightly increased; CO$\sub$2/, acidity, Cl, NO$\sub$2/-N, Cu, Zn and Al were increased in 2 and 3 times; total residue, total ignitious residue, COD, BOD$\sub$5/, NH$\sub$4/-N, PO$\sub$4/-P, Mn, Pb and total-Fe were increased in 4 to 7 times; and SO$\sub$4/, particulate-Fe and Cd were increased in 10 to 11 times. On the other hand, coliforms were increased in 650 times; fecal coliforms in 365 times; enterococci and total plate counts in 30 times, respectively. In view points of water quality standards, the down Han River water is now leveling out in Cd, coliforms and fecal coliforms for the agricultural use; in dissolved oxygen and some trace elements (Cu, Zn, Pb and Cd) for the fishery use; in ammonia, COD, BOD$\sub$5/, and Cd for the drinking use.

  • PDF

Emission Characteristics of PM10 and PM2.5 in Thermal Power Plants Using Different Fuel Types (연료별 화력발전시설의 미세먼지(PM10 및 PM2.5) 배출특성)

  • Park, Hyun-Soo;Lee, Duk-An;Yang, Jeong-Go;Jang, Seong-Guk;Kim, Hwan-Beom;Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.534-541
    • /
    • 2018
  • Concentrations of total particulate matter (TPM), $PM_{10}$ and $PM_{2.5}$ were measured at three different sites based on each different fuel type (solid, liquid and gas) used in thermal power plants operating in Yeosu and Gwangyang National Industrial Complexes during 2017. The highest concentrations of TPM, $PM_{10}$, and $PM_{2.5}$ were observed at the solid fuel facility, and these values were $3.356mg/Sm^3$, $2.342mg/Sm^3$ and $1.834mg/Sm^3$, respectively. The ratio of $PM_{2.5}$ to TPM was the highest value of 54.6% in solid fuel case, and the lowest was 35.7% found in liquid fuel case. As a result of analyzing 9 kinds of metal compound with respect to each particle size, the metal concentration of TPM is higher than those of $PM_{10}$ and $PM_{2.5}$ in all fuel types. Total concentrations of metal elements in TPM by fuel difference are $1.2702mg/Sm^3$ in solid fuel, 0.0603 mg/Sm3 in liquid fuel, and $0.0733mg/Sm^3$ in gas fuel, respectively. Relatively higher total metal concentration in gas fuel than in liquid fuel was found; and this could be higher Cr and Al concentrations in use of gas fuel. As a result of estimating the emission factors of each facility, in case of solid fuel, TPM emissions per electricity production were found to be 0.7080 kt/PJ, followed by liquid fuel and gas fuel. $PM_{10}$ and $PM_{2.5}$ emissions per hour of electricity production were similar to those of TPM.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) via Public Facilities PM2.5, Korea (II)

  • Kim, Ho-Hyun;Lee, Geon-Woo;Yang, Ji-Yeon;Jeon, Jun-Min;Lee, Woo-Seok;Lim, Jung-Yun;Lee, Han-Seul;Gwak, Yoon-Kyung;Shin, Dong-Chun;Lim, Young-Wook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2014
  • The purpose of the study is to evaluate the pollution level (gaseous and particle phase) in the public facilities for the PAHs, non-regulated materials, forecast the risk level by the health risk assessment (HRA) and propose the guideline level. PAH assessments through sampling of particulate matter of diameter < 2.5 ${\mu}m$ ($PM_{2.5}$). The user and worker exposure scenario for the PAHs consists of 24-hour exposure scenario (WIES) assuming the worst case and the normal exposure scenario (MIES) based on the survey. This study investigated 20 PAH substances selected out of 32 substances known to be carcinogenic or potentially carcinogenic. The risk assessment applies major toxic equivalency factor (TEF) proposed from existing studies and estaimates individual Excess Cancer Risk (ECR). The study assesses the fine dusts ($PM_{2.5}$) and the exposure levels of the gaseous and particle PAH materials for 6 spots in each 8 facility, e.g. underground subway stations, child-care facilities, elderly care facilities, super market, indoor parking lot, terminal waiting room, internet caf$\acute{e}$ (PC-rooms), movie theater. For internet caf$\acute{e}$ (PC-rooms) in particular, that marks the highest $PM_{2.5}$ concentration and the average concentration of 10 spots (2 spots for each cafe) is 73.3 ${\mu}g/m^3$ (range: 6.8-185.2 ${\mu}g/m^3$). The high level of $PM_{2.5}$ seen in internet cafes was likely due to indoor smoking in most cases. For the gaseous PAHs, the detection frequency for 4-5 rings shows high and the elements with 6 rings shows low frequency. For the particle PAHs, the detection frequency for 2-3 rings shows low and the elements with 6 rings show high frequency. As a result, it is investigated that the most important PAHs are the naphthalene, acenaphthene and phenanthrene from the study of Kim et al. (2013) and this annual study. The health risk assessment demonstrates that each facility shows the level of $10^{-6}-10^{-4}$. Considering standards and local source of pollution levels, it is judged that the management standard of the benzo (a)pyrene, one of the PAHs, shall be managed with the range of 0.5-1.2 $ng/m^3$. Smoking and ventilation were considered as the most important PAHs exposure associated with public facility $PM_{2.5}$. This study only estimated for inhalation health risk of PAHs and focused on the associated cancer risk, while multiple measurements would be necessary for public health and policy.