• Title/Summary/Keyword: elementary scientific gifted

Search Result 135, Processing Time 0.02 seconds

Development and Application of the STEAM Teaching-Learning Program in 'Earth & Moon' Unit for Science Gifted Elementary School Students (초등과학영재를 위한 '지구와 달' 단원의 STEAM 교수·학습 프로그램 개발 및 적용)

  • Jeong, Sang Yun;Sohn, Jungjoo
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.359-373
    • /
    • 2013
  • This study is aimed to find out the effect after the development and application of the STEAM teaching-learning program for science gifted elementary school students. The validity of the developed program was verified by three experts. The program consists of a total of eight classes and eight days were carried out. Recorded lessons, class observation journal, and recorded interview transcription data were measured and then analyzed the effect. 'Present situation' is a very important step was confirmed. The degree of understanding of a given situation affected to task commitment, the formation of scientific concepts, creative design and deliverable.

  • PDF

Analysis on Hypothesis-generating Ability of Elementary School Gifted Students in Science and Its Correlation with Meta-cognition (초등과학영재의 가설설정 능력과 메타인지와의 관계 분석)

  • Park, Mijin;Seo, Hae-Ae
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.1
    • /
    • pp.59-76
    • /
    • 2015
  • The study aimed to investigate elementary school gifted students' hypothesis-generating ability and characteristics of hypotheses and to analyze the correlation between hypothesis-generating ability and meta-cognition. Nineteen students enrolled in a science gifted education center affiliated with a university in 2013 were selected as research subjects. An instrument of open ended items about hypothesis generating was developed and administered to students, and their meta-cognition as well as their preferred science teaching method were examined. Hypotheses generated by students were classified into two categories: scientific and non-scientific hypotheses, and then a closer analysis was conducted on characteristics of non-scientific hypotheses. It was found that 47% (18 out of 38 hypotheses) was scientific ones showing that elementary school gifted students in science in this study presented low level of ability in generating hypothesis. It was also found that non-scientific hypotheses frequently showed characteristics of uncertain in causality or impossible to verify relationships. Furthermore, differences in hypothesis-generating ability and characteristics of hypotheses were appeared in conditions whether inquiry questions and variable identification process were given or not. Students showed high abilities in hypothesis generating and variable identifying when inquiry questions and variable identification process were given. Compared to previous research results, students in the study showed high level of meta-cognition and tendency of utilizing monitoring strategy more than planning and regulating. In ill-structured conditions that students themselves find inquiry questions and identify variables, a significant (p<.05) correlation appeared between hypothesis generating ability and meta-cognition and a high level of correlation between planning and regulating strategies. It was also found that differences existed in hypothesis-generating ability and preferred science teaching methods between students with high level and those with low level of meta-cognition; and students with low level of meta cognition showed difficulties in generating hypothesis and identifying variables.

Analysis on Types of Scientific Emoticon Made by Science-Gifted Elementary School Students and their Perceptions on Making Scientific Emoticons (초등 과학영재 학생의 과학티콘 유형 및 과학티콘 만들기에 대한 인식 분석)

  • Jeong, Jiyeon;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2022
  • This study analyzed the types of scientific emoticons made by science-gifted elementary school students and their perceptions on making scientific emoticons. To do this, 71 students from 4th to 6th graders of two gifted science education center in Seoul were selected. Scientific emoticons made by the students were analyzed according to the number and types. Their perceptions on making scientific emoticons were also analyzed through a questionnaire and group interviews. In the analyses for types of text in the scientific emoticons, 'word type' and 'sentence type' were made more than 'question and answer type'. And the majority of students made more 'pun using pronunciation type' and 'mixed type' than other types. They also made more 'graphic type' and 'animation type' than 'text type' in the images of the scientific emoticons. In the analyses for the information of the scientific emoticons, 'positive emotion type' and 'negative emotion type' of scientific emoticons were made evenly. The students made more 'new creation type' than 'partial correction type' and 'entire reconstruction type'. They also used scientific knowledge that preceded the knowledge of science curriculum in their grade level. The scientific knowledge of chemistry was used more than physics, biology, earth science, and combination field. 'Name utilization type' was more than 'characteristic utilization type' and 'principle utilization type'. Students had various positive perceptions in making scientific emoticons such as 'increase of scientific knowledge', 'increase of various higher-order thinking abilities', 'ease of explanation, use, memory, and understanding of scientific knowledge', 'increase of fun, enjoyment, and interest about science and science learning', and 'increase of opportunity to express emotions'. They were also aware of some limitations related to 'difficulties in the process of making scientific emoticons', 'lack of time', and 'limit that it may end just for fun'. Educational implications of these findings are discussed.

The Development of an Online Scientific Inquiry Learning System (온라인 과학 탐구 학습체제의 개발)

  • Lee, Bong-Woo;Son, Jeong-Woo;Jeong, Hyun-Chul
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.271-280
    • /
    • 2006
  • In this paper, an Online Scientific Inquiry Learning System was developed with the aim of improving student's scientific literacy and scientific inquiry ability. It was determined that there should be 4 distinct principles applicable to the design of the Learning system. First, it should enrich learner's motivation. Second, it should provide students with the chance for reflecting on the inquiry process. Third, it should emphasize multi-dimensional forms of interaction. Fourth, students should be able to create new information through it. The server system including the database, equation editor, reporting tool, search engine were all utilized for developing the learning system. In addition, the authors produced 24 web-based projects which were guided inquiry activities in which various inquiry abilities (reasoning, prediction, experiment design) could be developed. An Online Scientific Inquiry Learning System is not the only program which could be utilized in improving scientific inquiry abilities, but at the very least, such a system can serve as the prototype for developing an online learning system.

  • PDF

The Effect Analysis of Teacher Training Program to Enhance Scientific Creative Problem Solving Abilities (과학 창의적 문제 해결력 신장을 위한 초등교사 연수 프로그램에 대한 평가)

  • Paik, Seoung-Hey;Kim, Jung-Eun
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.2
    • /
    • pp.133-160
    • /
    • 2013
  • The purposes of this research are to develop and to evaluate the teacher training program for enhancing scientific creative problem-solving abilities. For this purpose, by considering previous studies, this study suggested 'scientific creative problem solving process'. In the course of elementary teacher program development, the present study followed Instructional Systems Development stages, where Kirkpatrick's four-step evaluation model was applied for a quality of evaluation. As a result of evaluation, it was found that teachers' recognition of competency to teach the scientific creative problem solving process was increased. In addition, teachers' evalution of the program was positive and their willingness to apply it to the field was found high, which indicated that the training program's applicability to schools would be positive.

Comparison of Science Gifted and Ordinary Elementary School Students with Regard to the Concept of Groundwater (초등학교 과학영재학생과 일반학생의 지하수에 대한 개념 비교)

  • Lee, Hyong-Jae;Park, Sang-Tae
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.4
    • /
    • pp.855-874
    • /
    • 2012
  • This research aimed to obtain basic data for elementary school students to form proper concepts by comparing the science gifted students and the ordinary students of elementary school with regard to the groundwater concept, formation process, existence forms, and movement. The research subjects were 65 fifth and sixth graders of the elementary school students and the spatial ability test was conducted on the subjects, and 4 science gifted students and 8 ordinary students chosen from the subjects were analyzed using half-structured interview data and ground water drawing drawn by the students. The conclusion derived in accordance with the research purpose is summarized as follows. It was found that there were no great differences in the answers to the question asking what groundwater is between the science gifted elementary school students with high spatial ability and the ordinary elementary school students with moderate spatial ability. The ordinary students with low spatial ability tended to regard groundwater as the concept of water and sewage. In the concept of the formation process of groundwater, the science gifted elementary school students with high spatial ability explained it by citing diverse surface water such as rainfall, river water, lake, and waterfall, and the ordinary elementary school students with moderate spatial ability all mentioned only rainfall and river water and could not explain diverse spatial factors. The ordinary elementary school students with low spatial ability mentioned rainfall and river water and perceived that groundwater was formed artificially. In the concept regarding the existence form of groundwater, the ordinary elementary school students with low spatial ability could not think of space perception that small pore space exists in earth or soil in the ground. The science gifted elementary school students with high spatial ability knew that groundwater exists in pore space with regarding groundwater movement, the ordinary elementary school students with low spatial ability thought that there was no groundwater movement and that it could be moved only by artificial facilities. There were differences in the perception of pore space and in the perception of existence and non-existence of groundwater movement accordingly, but for most of the elementary school students, the concept of groundwater was formed differently from the scientific concept. It is considered that most of the elementary school students formed erroneous concept about groundwater and could not connect ground water under the surface of the earth with the substances forming its surroundings with regard to the concept of groundwater.

Exploration on Teaching and Learning Experiences Improving Positive Experiences about Science of Scientifically-Gifted Elementary School Students (초등 과학영재 학생의 과학긍정경험 향상을 위한 교수-학습 경험 탐색)

  • Seo, Sunjin;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.2
    • /
    • pp.133-144
    • /
    • 2021
  • The purpose of this study is to explore the teaching and learning experiences to improve the positive experiences about science (PES) of scientifically-gifted elementary school students. For this study, 36 students in grades 5~6 at a gifted science education institutes in Seoul were selected and conducted pre-test and post-test for 'Test for Indicators of Positive Experiences about Science (TIPES).' After the weekly science classes of the institutions were over, individual in-depth interviews were also conducted with some students to explore the teaching and learning experiences for improving their PES. The analysis of the results reveals that the science classes for scientifically-gifted students have been shown to improve PES of scientifically-gifted elementary school students. The teaching and learning experiences to improve their PES included eight teaching and learning experiences that appeared in general elementary school students of previous study such as 'practice-centered exploratory activities,' 'student-led class,' 'positive and professional feedback,' 'construction of knowledge through exploration,' 'class considering student's interest and aptitude,' 'use of materials related to real life,' 'smooth communication and collaboration in group activities,' and 'appropriate difficulty in learning content.' There were also six teaching and learning experiences that newly emerged from science-gifted students: 'Learning experience through the strategies for improving scientific creativity,' 'inquiry experience as a little scientist,' 'advanced or accelerated learning experience,' 'learning experience with excellent students,' 'experience helping other students,' and 'experience with high or low achievement'. Based on these results, the practical implications for improving the student's PES are suggested.

The Analysis of Research Trends Related to STEAM Education in Science Gifted and Talented Education Using Korea Education & Research Information Service(KERIS) (KERIS를 활용한 과학영재교육에서의 STEAM 교육 관련 연구동향 분석)

  • Lee, Jung-Seok;Kim, Young-Gwon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • This study attempted to present a better direction for the development of STEAM education in science gifted and talented education by making a comparative analysis of the trends date and discussing the implications based on that through Korea Education & Research Information Service(KERIS) The results were as follows: First, the results of the analysis in the order of the published year(2011) showed that since one paper appeared in a journal, the number of the papers has continued to increase. Second, the analysis by research objects found the highest number of the studies on elementary school gifted students; followed by on middle school gifted students; on elementary school gifted students and general school students and teachers; and high school gifted students, middle school gifted students and general school students, and elementary, middle school gifted students, respectively. However, research targeted at infants and college students did not exist. Third, the analysis by research subjects found that science gifted education consists of mainly programming/curriculum and creativity. In addition, the higher number of the researches on creativity suggests that science gifted education is closely associated with not only scientific creativity but science education's nature of increasing the interest and understanding of science and technology. Fourth, the analysis by research methods revealed that the number was the highest regarding development and research studies, followed by experimental research, survey research, qualitative research, and literature research.

Analysis of Scientific Explanations and the Affordances Constructed in Gifted Elementary Students' Science Drawings and Science Writings about Air Pressure: Pedagogical Use of Multimodal Representations (공기 압력에 대한 초등영재 학생들의 과학그리기 및 과학글쓰기에서 구성된 과학적 설명과 어포던스 분석 - 다중모드적 표상의 교육적 활용 -)

  • Chang, Jina;Park, Joonhyeong;Park, Jisun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.161-177
    • /
    • 2023
  • Scientific explanation is composed of various representations such as texts, diagrams, and graphs, and each representation contributes to expanding scientific meaning by connecting similar but slightly different meanings as a 'mode'. Based on this perspective of social semiotics, we aimed to identify the characteristics of meaning formation demonstrated in students' science writing (verbal mode) and science drawing (visual mode) and to discuss the pedagogical use of multimodal representations. To that end, 18 science drawings and 18 scientific writings constructed by science-gifted elementary students on air pressure were collected. The characteristics of the drawn and written explanations were then analyzed from the affordance perspective in social semiotics. In science drawing, students showed a tendency to use the affordance of the visual mode to infer concrete changes from the particle view, such as the movement of air particles, the number of air particles, and the collision of particles. In science writing, students used the affordance of the verbal mode mainly to infer the causal relationship between the concept of air pressure and other related factors at an abstract level. Based on those results, we discuss the educational implications and provide concrete examples of how to use the unique affordances of each form to complement one another.

Development and Application of Program Based on Peer Instruction for Science Gifted Students of Start Period (탐색기 과학영재를 위한 동료교수법 기반 교수·학습 프로그램 개발 및 적용)

  • Lee, Ji Won;Kim, Jung Bog
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.2
    • /
    • pp.237-256
    • /
    • 2013
  • The purpose of this study is to develop program that take a genuine interest in science and motivate students to keep up their study for science gifted children of start period. In this study, we develop and apply the program about sinking and floating for elementary science gifted students, and analyse degree of conceptual change. Students' prior knowledge is analysed for developing the program, and each step is settled about concept of density and buoyancy. Conceptests are arranged into step by step, and we apply the program to 26 science gifted students of 6th grade elementary school. We compare a percentage of correct answers of pre-test and post-test and evaluate Hake gain for analysis of degree of conceptual change. As a result, science gifted students' concepts are changed effectively into scientific concepts by program based on peer instruction for gifted students of start period. And they evaluate the program is novel and useful, also they can be motivated by the program.