• 제목/요약/키워드: elemental technology

검색결과 615건 처리시간 0.021초

유전체 장벽 방전을 이용한 원소수은의 산화특성 (Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process)

  • 변영철;고경보;조무현;남궁원;신동남;고동준;김경태
    • Korean Chemical Engineering Research
    • /
    • 제45권2호
    • /
    • pp.183-189
    • /
    • 2007
  • 대표적인 수은 발생원인 도시폐기물 소각로와 화력 발전소 등지에서 배출되는 원소수은($Hg^0$)은 산화수은($Hg^{2+}$) 및 입자상 수은($Hg^p$)과 달리 기존의 대기오염 방지시설로 제거하기 난해한 편이다. 그로 인해 원소수은의 효율적 제거에 대한 많은 연구가 진행중이며, 이 연구에서는 저온 플라즈마(non-thermal plasma)의 하나인 유전체 장벽 방전(dielectric barrier discharge: DBD) 공정을 이용하여 원소수은 산화에 관한 실험을 수행하였다. 실험 결과, 공기 상의 DBD 공정에서는 생성되는 산소 원자와 오존에 의해서 원소수은이 산화수은으로 전환됨을 알 수 있었으며, 원소수은의 산화율을 결정하는 주된 변수는 반응기에 주입되는 에너지 밀도임을 확인할 수 있었다.

Resolution Enhanced Computational Integral Imaging Reconstruction by Using Boundary Folding Mirrors

  • Piao, Yongri;Xing, Luyan;Zhang, Miao;Lee, Min-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.363-367
    • /
    • 2016
  • In this paper, we present a resolution-enhanced computational integral imaging reconstruction method by using boundary folding mirrors. In the proposed method, to improve the resolution of the computationally reconstructed 3D images, the direct and reflected light information of the 3D objects through a lenslet array with boundary folding mirrors is recorded as a combined elemental image array. Then, the ray tracing method is employed to synthesize the regular elemental image array by using a combined elemental image array. From the experimental results, we can verify that the proposed method can improve the visual quality of the computationally reconstructed 3D images.

Synthesis of Isopropyldichlorosilane by Direct Process

  • Lim, Weon-Cheol;Cho, Joo-Hyun;Han, Joon-Soo;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1661-1664
    • /
    • 2007
  • Direct reaction of elemental silicon with a gaseous mixture of isopropyl chloride (1) and hydrogen chloride in the presence of copper catalyst using a stirred bed reactor equipped with a spiral band agitator gave isopropyldichlorosilane having a Si-H bond (2a) as a major product and isopropyltrichlorosilane (2b) along with chlorosilanes, trichlorosilane and tetrachlorosilane. A process for production of 2a was maximized using the 1:0.5 mole ratio of 1 to HCl and smaller size of elemental silicon at a reaction temperature of 220 °C. When a reaction was carried out by feeding a gaseous mixture of 1 [12.9 g/h (0.164 mol/h)] and HCl [2.98 g/h (0.082 mol/h)] to a contact mixture of elemental silicon (360 g) and copper (40 g) under the optimum condition for 45 h, 2a among volatile products kept up about 82 mol % until 35 h and then slowly decreased down 68 mol % in 45 h reaction. Finally 2a was obtained in 38% isolated yield (based on 1 used) with an 85% consumption of elemental silicon in a 45 h reaction. In addition to 2a, 2b was obtained as minor product along with chlorosilanes, trichlorosilane, and tetrachlorosilane. The decomposition of 1 was suppressed and the production of 2a improved by adding HCl to 1.

지속가능한 저탄소 장수명 공동주택구현을 위한 시스템 체크리스트 구성에 관한 연구 (A Study on the Organization of System Checklist for the Realization of the Sustainable Low-carbon Long-life Housing)

  • 박경순;이성
    • KIEAE Journal
    • /
    • 제11권6호
    • /
    • pp.63-69
    • /
    • 2011
  • To propose the evaluation criteria of substantial sustainable low-carbon long-life housing, this study subdivided an existing planning item composed of the simple enumeration type by coding system of high/middle/low classification according to the core technology, and it was subdivided by a total 203 piece item. In other words, it subdivided 4 divisions by apartment unit, building, park and equipment, and classified elemental technology and system were divided by passive/active elemental technology and system according to the design process of long-life housing. Besides that, this paper presents the restructure results of checklist with quantitative criteria that classified by the weighting factor and compatibility between law system and current planning criteria in domestic long-life housing.

Accelerated Generation Algorithm for an Elemental Image Array Using Depth Information in Computational Integral Imaging

  • Piao, Yongri;Kwon, Young-Man;Zhang, Miao;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • 제11권2호
    • /
    • pp.132-138
    • /
    • 2013
  • In this paper, an accelerated generation algorithm to effectively generate an elemental image array in computational integral imaging system is proposed. In the proposed method, the depth information of 3D object is extracted from the images picked up by a stereo camera or depth camera. Then, the elemental image array can be generated by using the proposed accelerated generation algorithm with the depth information of 3D object. The resultant 3D image generated by the proposed accelerated generation algorithm was compared with that the conventional direct algorithm for verifying the efficiency of the proposed method. From the experimental results, the accuracy of elemental image generated by the proposed method could be confirmed.

Free-view Pixels of Elemental Image Rearrangement Technique (FPERT)

  • Lee, Jaehoon;Cho, Myungjin;Inoue, Kotaro;Tashiro, Masaharu;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.60-66
    • /
    • 2019
  • In this paper, we propose a new free-view three-dimensional (3D) computational reconstruction of integral imaging to improve the visual quality of reconstructed 3D images when low-resolution elemental images are used. In a conventional free-view reconstruction, the visual quality of the reconstructed 3D images is insufficient to provide 3D information to applications because of the shift and sum process. In addition, its processing speed is slow. To solve these problems, our proposed method uses a pixel rearrangement technique (PERT) with locally selective elemental images. In general, PERT can reconstruct 3D images with a high visual quality at a fast processing speed. However, PERT cannot provide a free-view reconstruction. Therefore, using our proposed method, free-view reconstructed 3D images with high visual qualities can be generated when low-resolution elemental images are used. To show the feasibility of our proposed method, we applied it to optical experiments.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Slurry Phase Reaction of Elemental Silicon with Methanol in the Presence of Copper: Direct Synthesis of Trimethoxysilane

  • Han, Joon-Soo;Cho, Joo-Hyun;Lee, Myong-Euy;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.683-686
    • /
    • 2009
  • Slurry phase reaction of elemental silicon with methanol has been studied in the presence of copper using a small amount of cuprous chloride as an activator in DBT (dibenzyltoluene) at various temperatures from 200 ${^{\circ}C}$ to 320 ${^{\circ}C}$. Trimethoxysilane (1a) with a Si-H unit was obtained as the major product and tetramethoxysilane (1b) as the minor product. The reaction worked well using a 0.5 wt % CuCl as an activator. The optimum temperature for this direct synthesis of 1a was 240 ${^{\circ}C}$. Methoxysilanes were obtained in 95% yield with 81% selectivity to 1a from 85% conversion of elemental silicon.

Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait

  • Bajoga, A.D.;Al-Dabbous, A.N.;Abdullahi, A.S.;Alazemi, N.A.;Bachama, Y.D.;Alaswad, S.O.
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1638-1649
    • /
    • 2019
  • Top soil samples across the state of Kuwait numering ninety were collected and analysed using gamma-ray spectrometry, to evaluate the elemental concentration of $^{238}U$, $^{232}Th$ and $^{40}K$ and their depletion/enrichment. Results of elemental concentration ranges from 0.48 to 2.61 mg/kg, 0.87-5.23 mg/kg, and 0.24-2.23%, with a mean values of 1.39 mg/kg, 3.47 mg/kg, and 1.18%, for the $^{238}U$, $^{232}Th$ and $^{40}K$, respectively. Further analysis was conducted amongst the five identified soil types, i.e. Aquisalids (S1), Calcigypsids (S2), Petrocalcids (S3), Petrogypsids (S4), and torripsamment (S5). The highest radioactivity concentrations from both uranium and thorium were recorded in the S2 (Calcigypsids) soil, with a value of 1.71 (mg/kg) and 4.45 (mg/kg), respectively. Minimum and maximum values of $^{40}K$ are 1.1(%) and 1.27(%) and is prevalent in Aquisalids (S1) and Petrocalcids (S3) soil types, respectively. Ratios of elemental concentration for $^{232}Th/^{238}U$, $^{40}K/^{238}U$, $^{40}K/^{232}Th$ across the soil types are 2.53, 0.09 and 0.03, with a correlation coefficient of 0.92, 0.34, and 0.38, respectively. A progressively higher $^{232}Th/^{238}U$ ratio is observed moving south-wards, indicating lower $^{238}U$ content in soils from the south relative to the northern part. Overall results indicate Kuwait to be relatively an area with low level of natural radioactivity.