• Title/Summary/Keyword: element-independent

Search Result 543, Processing Time 0.026 seconds

Characteristics of a Hybrid 4-Node Shell Element with Drilling Degrees of Freedom (회전자유도를 갖는 혼합 4절점 쉘요소의 특성)

  • 임장근;김정룡
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.120-128
    • /
    • 2002
  • In order to analyze shell structures more accurately and effectively, a hybrid 4-node quadrilateral shell element is formulated. The element includes the frilling degrees of freedom and the independent parameter terms of the stress resultants are appropriately selected to overcome some of the shortcomings of the standard 4-node quadrilateral elements. In order to show the accuracy and convergent characteristics of the proposed shell element, three numerical examples are analyzed and the results are compared with the existed. As a result of this study, following conclusions are obtained. (1)Analysis results by the proposed element are less sensitive to the element geometric distortion. (2)The proposed element does not produce any spurious zero-energy modes

  • PDF

Finite Element Mesh Dependency in Nonlinear Earthquake Analysis of Concrete Dams (콘크리트 댐의 비선형 지진해석에서의 유한요소망 영향)

  • 이지호
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.637-644
    • /
    • 2001
  • A regularization method based on the Duvaut-Lions viscoplastic scheme for plastic-damage and continuum damage models, which provides mesh-independent and well-posed solutions in nonlinear earthquake analysis of concrete dams, is presented. A plastic-damage model regularized using the proposed rate-dependent viscosity method and its original rate-independent version are used for the earthquake damage analysis of a concrete dam to analyze the effect of the regualarization and mesh. The computational analysis shows that the regularized plastic-damage model gives well-posed solutions regardless mesh size and arrangement, while the rate-independent counterpart produces mesh-dependent ill-posed results.

Organization of Independent Work of Students of Higher Pedagogical Universities of Ukraine by Means of Moodle

  • Alla, Lukіianchuk;Dmytro, Yefimov;Oksana, Biletska;Andrii, Hrytsenko;Oxana, Hevko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.421-426
    • /
    • 2022
  • This study aimed to determine the effectiveness of the Moodle system in the organization of independent work of students of pedagogical profile.The purpose of the article is to analyze the Moodle platform as an innovative element of educational and pedagogical strategies and a component of the educational and methodological content for the self-study of students.Methodology is divided into clusters: general scientific (analysis, classification), ICT methods (modeling, informatization), and philosophical (synergetics). The study revealed the reorientation of Moodle from an auxiliary element to an alternative format in the organization of independent work of student teachers. Prospects for further scientific research determined in the interest of all participants in the educational process in the further development of Moodle as an effective tool for self-education of future teachers.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Nam-Ho
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.569-586
    • /
    • 1996
  • A new three-dimensional 8-node solid element with rotational degrees of freedom is presented. The proposed element is established by adding rotational degrees of freedom to the basic 8-node solid element. Thus the element has three translations and three rotational degrees of freedom per node. The corner rotations are introduced by transforming the hierarchical mid-edge displacements which are parabolic shape along an edge. The derivation of the element is based on the mixed variational principles in which the rotations are introduced as independent variables. Several types of non-conforming modes are selectively added to the displacement fields to obtain a series of improved elements. The resulting elements do not have the spurious zero energy modes and Poisson's ratio locking and pass patch test. Numerical examples show that presented non-conforming solid elements with rotational degrees of freedom show good performance even in the highly distorted meshes.

Adaptive finite element wind analysis with mesh refinement and recovery (요소 세분화 및 재결합을 이용한 바람의 적응적 유한요소 해석)

  • 최창근;유원진;이은진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.60-67
    • /
    • 1998
  • This paper deals with the development of a variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined elements and efficiently used for construction of a refined mesh without generating distorted elements. A modified Gaussian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

  • PDF

Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine

  • Kim, Sung-Jin;Park, Eui-Jong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1628-1633
    • /
    • 2016
  • This paper derives an effective shape of the ferromagnetic pole pieces (low-speed rotor) for the reduction of transmission torque ripple in a magnetic-geared machine based on a Box-Behnken design (BBD). In particular, using a non-linear finite element method (FEM) based on 2-D numerical analysis, we conduct a numerical investigation and analysis between independent variables (selected by the BBD) and reaction variables. In addition, we derive a regression equation for reaction variables according to the independent variables by using multiple regression analysis and analysis of variance (ANOVA). We assess the validity of the optimized design by comparing characteristics of the optimized model derived from a response surface analysis and an initial model.

Stress Analysis of LOWER ARM for Change of Section Shape(I) (단면 형상의 변화에 따른 LOWER ARM의 응력 해석(I))

  • 박영철;윤두표;한근조;배명호;진두병;이범재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Stress distribution analysis was implemented by using finite element method for the lower arm connecting Independent front suspension. Results were obtained for the 8 load conditions and for the 3 types of section (I, H and H+I). On the basis of it, the shape and dimensions of lower arm were optimized. Finally it was pointed out that the H type has an most satisfied strength, among 3 section types and highest safety factor and yield strength in each case of load condition.

  • PDF

A Design of Architecture for Federating between NRNs and Determination Optimal Path

  • Park, Jinhyung;Cho, Hyunhun;Lee, Wonhyuk;Kim, Seunghae;Yun, Byoung-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.678-690
    • /
    • 2014
  • The current networks do not disclose information about a management domain due to scalability, manageability and commercial reasons. Therefore, it is very hard to calculate an optimal path to the destination. Also, due to poor information sharing, if an error occurs in the intermediate path, it is very difficult to re-search the path and find the best path. Hence, to manage each domain more efficiently, an architecture with top-level path computation node which can obtain information of separate nodes are highly needed This study aims to investigate a federation of a united network around NRN(National Research Network) that could allow resource sharing between countries and also independent resource management for each country. Considering first the aspects that can be accessed from the perspective of a national research network, ICE(Information Control Element) and GFO(Global Federation Organizer)-based architecture is designed as a top-level path computation element to support traffic engineering and applied to the multi-domain network. Then, the federation for the independent management of resources and resource information sharing among national research networks have been examined.

Comparison of Operating Characteristics between Flux-lock Type and Resistive Type Superconducting Fault Current Limiters (자속구속형과 저항형 초전도 전류제한기의 특성비교)

  • Park, Hyoung-Min;Lim, Sung-Hun;Park, Chung-Ryul;Chol, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.363-369
    • /
    • 2005
  • we compared the operating characteristics between flux-lock type and resistive type superconducting fault current limiters(SFCLs). Flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a high-Tc superconducting(HTSC) element is connected with coil 2 in series. The the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. It was confirmed from experiments that flux-lock type SFCL could improve both the quench characteristics and the transport capacity compared to the resistive type SFCL, which means, the independent operation of HTSC element.