• 제목/요약/키워드: element stiffness

검색결과 2,616건 처리시간 0.031초

대형트럭 프레임의 비틀림 강성 평가를 위한 유한요소 모델 개발 (Development of a Finite Element Model for Evaluating Torsional Stiffness of the Frame of a Large Truck)

  • 오재윤;문일동
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.563-569
    • /
    • 2005
  • This paper develops a finite element model of a cabover type large truck. The finite element model is for evaluating torsional stiffness of the frame of the large truck. The torsional test of the frame is conducted in order to validate the developed finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. A vertical upward load and a vertical downward load are applied to the frame in the torsional test. The frame's torsional stiffness is computed with the measured load and torsional angle in the torsional test. The finite element model of the large truck includes cab, deck and payload, suspension, and tire. Cab, deck, and suspension are modeled not to affect the frame's torsional stiffness. The simulation is performed with the developed finite element model for evaluating the frame's torsional stiffness. The simulation results show a very good correlation with the torsional test results in the tendency of changing of the frame's torsional stiffness not only with the direction of the applying load but also with the amount of the applying load. In addition, the simulation results predict the measured torsional stiffness of the frame with about $5{\%}$ error.

척추의 유한 요소 해석을 위한 강성 행렬 요소의 적용 (Application of Stiffness Matrix Element for Finite Element Analysis of Spine)

  • 정일섭;안면환
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.226-232
    • /
    • 2003
  • Difficulties in the finite element modeling of human spine are evaded by using a stiffness matrix element whose properties can be characterized from experimentally measured stiffness of functional spinal units. Relative easiness is in that inter-vertebral discs, ligaments, and soft tissues connecting vertebrae do not need to be modeled as they are. The remarkable coupling effect between distinct degrees of freedom induced by the geometric complexity can be accommodated without much effort. An idealized block model with simple geometry for vertebra is employed to assess the feasibility of this method. Analyses are performed in both levels of motion segment and spinal column, and the result is compared with that from detail model. As far as the global behavior of spine is concerned, the simplification is found not to aggravate inaccuracy only if sufficient experimental data is provided and interpreted properly.

곡선보의 강선 과잉 현상과 고유치에 관한 연구 (A Study on the Stiffness Locking Phenomena and Eigen Problem in a Curved Beam)

  • 민옥기;김용우;유동규
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.310-323
    • /
    • 1990
  • A three-noded, with three degree-of-freedom at each node, in-plane curved beam element is formulated and employed in eigen-analysis of constant curvature beam. The conventional quadratic shape functions used in a three noded C .deg. type curved beam element produce such an undesirable large stiffness that a significant error is introduced in displacements and stresses. These phenomena are called 'Stiffness Locking Phenomena', which result from spurious strain energy due to inappropriate assumptions on independent isoparametric quadratic interpolation functions. Stiffness locking phenomena can be alleviated by using modified interpolation functions which get rid of spurious constraints of conventional interpolation functions. Eigenvalues and their modes as well as displacements and stresses may be locked because they are related to stiffness. Using modified curved beam element in eigenvalue problem of cantilever and arch, the property and performance of modified curved beam element are examined by numerical experimentations. In these eigen-analyses, mass matrices are calculated by using both modified and unmodified curved beam element, are compared with theoretical solutions. These comparisons show that the performance of the modified curved beam element is better than that of the unmodified curved beam element.

드릴링 자유도를 가진 매크로 삼각형 요소를 이용한 평면 응력 해석 (Construction of a macro plane stress triangle element with drilling d.o.f.'s)

  • 엄재성;김영태;이병채
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2004
  • A simple macro triangle with drilling d.o.f.'s is proposed for plane stress problems based on IET(Individual element test) and finite element template. Three-node triangular element has geometrical advantages in preprocessing but suffers from bad performance comparing to other shapes of elements -especially quadrilateral. Main purpose of this study is to construct a high-performance linear triangular element with limited supplementary d.o.f.'s. A triangle is divided by three sub-triangles with drilling d.o.f.'s. The sub-triangle stiffness come from IET passing force-lumping matrix, so this assures the consistency of the element. The macro element strategy takes care of the element‘s stability and accuracy like higher-order stiffness in the F.E. template. The resulting element fits on the uses of conventional three-node. Benchmark examples show proposed element in closed form stiffness from CAS (Computer algebra system) gives the improved results without more computational efforts than others.

  • PDF

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.

6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석- (On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses-)

  • 김정운;정래훈;권영두
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석 (An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix)

  • 남문희;하대환;이관희;장홍득
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.193-200
    • /
    • 1997
  • 탄성지반상의 원형탱크해석에는 여러방법이 있지만 최근에 널리 사용되는 방법은 유한요소법이다. 그러나 이 방법은 탄성지반상의 탱크해석시 많은 절점수가 필요하게 된다. 이것은 곧 많은 계산기 기억용량 및 계산시간 뿐만 아니라 노력이 필요하게 된다. 본 연구에서는 유사탄성지반보(Analogy of Beam on Elastic Foundation) 및 지반강성행렬(Foundation Stiffness Matrix)을 이용하여 축대칭하중을 받는 축대칭탱크를 뼈대 구조화 할 수 있었다. 또한 이 뼈대 구조를 유한요소로 분할하고, 각 요소 강성행렬(Stiffness Matrix)을 전달행렬(Transfer Matrix)로 전환하여 전달행렬법으로 원형탱크를 해석 할 수 있었다. 유한요소법과 전달행렬법을 탄성지반상의 원형탱크 해석에 적용한 결과 두 해석결과의 차이는 없고, 전달행렬법을 적용한 경우 최종 연립방정식수가 4개로 간략화 되었다.

  • PDF

육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석 (Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element)

  • 최명수;문덕홍
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.