• Title/Summary/Keyword: element detection

Search Result 640, Processing Time 0.023 seconds

Development of Damage Detection Technique in Laminated Composites using Tapping Sound (타격음을 이용한 복합재료 구조물의 손상탐지법의 개발)

  • 김승조;황준석;송준영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.171-174
    • /
    • 2000
  • In this paper, impact sound realization of composite structures is performed to investigate the possibility of a new NDE system - Tapping Sound Analysis (TSA). TSA detects the existence of damages inside the structures by comparing tapping sound with pre-computed sound data of healthy structures. Tapping on the structures is modeled as impact problem and solved using finite element method. Calculation of sound is formulated based on the coupled finite element and boundary element method. Numerical simulation of impact sound and feature extraction scheme show that the impact sound can be used in the identification of damages of laminated composites.

  • PDF

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.

Calculation of Distributed Magnetic Flux Density under the Stator-Turn Fault Condition

  • Kim, Kyung-Tae;Hur, Jin;Kim, Byeong-Woo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.552-557
    • /
    • 2013
  • This paper proposed an analytical model for the distributed magnetic field analysis of interior permanent magnet-type blush-less direct current motors under the stator-turn fault condition using the winding function theory. Stator-turn faults cause significant changes in electric and magnetic characteristic. Therefore, many studies on stator-turn faults have been performed by simulation of the finite element method because of its non-linear characteristic. However, this is difficult to apply to on-line fault detection systems because the processing time of the finite element method is very long. Fault-tolerant control systems require diagnostic methods that have simple processing systems and can produce accurate information. Thus analytical modeling of a stator-turn fault has been performed using the winding function theory, and the distributed magnetic characteristics have been analyzed under the fault condition. The proposed analytical model was verified using the finite element method.

Optimal Angle Error Reduction of Magnetic Position Sensor by 3D Finite Element Method

  • Kim, Ki-Chan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic position sensor using hall effect elements. The angle detection simulation for the magnetic position sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from permanent magnet in the air-gap in the vicinity of hall effect elements. For the Taguchi method, three design parameters related to position of hall effect elements and shape of back yoke are selected. The characteristics of optimal magnetic position sensor are compared with those of original one in terms of simulation as well as experiment. Finally, the performances of the motor adopting original model and optimal model are represented for the purpose of verification of motor performance due to signals from magnetic position sensor.

Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack (알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석)

  • Lee Joon-Hyun;Lee Bong-Soo;Lee Min-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1336-1343
    • /
    • 2005
  • The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen;Esfandiari, Akbar;Fadavie Manochehr
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2022
  • In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.

Quantitative Analysis of a Steel Billet Surface Flaw Detection System by Means of a Finite Element Method

  • Bae, Sungwoo;Lee, Hongyeob
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1729-1734
    • /
    • 2016
  • The surface inspection of a steel billet is a common practice in the steel manufacturing process prior to hot rolling to produce steel wire for tire cord. This billet surface inspection is an important process because flaws on the surface may cause major failures during the product manufacturing phase. This paper presents a computer simulation based on a finite element method for a magnetic flaw detector with a function of the current intensity, the number of coil turns, and the billet proceeding speed during the production phase based on the typical condition of conventional apparatus. Based on the simulation result, the magnitude of the electromagnetic field on the surface diminished with distance from the electromagnet. In addition, the increased current intensity and the increased number of coil turns actually induced a stronger electromagnetic field on the billet surface. On the other hand, the proceeding speed of a billet in its production line had no significant effects. The result in this study may assist to reduce trial and error and to minimize the opportunity costs during the optimization process by applying the findings of this study into the operation condition in the steel billet production line.

Alcohol Detecting Characteristics of Catalytic Sensor (접촉연소식 센서의 알코올 검지 특성)

  • Kim, Jong-Won;Son, Young-Mok;Sim, Kyu-Sung;Park, Kee-Bae;Lee, Sang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 1994
  • Catalytic combustion type sensor was fabricated for alcohol detection, and its characteristics were tested. When the resistance of Pt coil for pellistor is 2.0 ohm, suggestible input power to bridge circuit was about 300 mW for methanol detection, and in the range from 350 mW to 400 mW for ethanol. Pellistors were prepared by means of impregnating Pt or Pd on the ${\gamma}$-alumina bead for sensing element, and transition metals such as $Co_{3}O_{4}$, $Fe_{2}O_{3}$ for compensating element.

  • PDF