• Title/Summary/Keyword: element block

Search Result 453, Processing Time 0.025 seconds

Finite Element Analysis of Engine Cylinder Block and Main Bore for Reliable Design (신뢰성 설계를 위한 엔진 실린더 블록과 메인 보어의 유한요소해석)

  • Yang Chulho;Han Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.39-48
    • /
    • 2005
  • Finite element analyses have been performed for the purpose of obtaining the robust and reliable design of engine cylinder block. Fatigue under high cycle operating loads is a primary concern and is evaluated by a probabilistic method. The robust and reliable design by a probabilistic method can provide satisfactory design conditions for the performance of the system under the influence of noise factors. Therefore, the design by this method will be desensitized to the uncontrollable noise factors. The simple methodology evaluates the distortion of main bore is proposed for the purpose of maintaining a well-controlled clearance between the crankshaft and main bores. The proposed methodology has proven a capability of predicting the distortion of the main bore under assembly, thermal, and firing loads. The calculated results are correlated well with the experimental ones.

Hot spot stress approach for Tsing Ma Bridge fatigue evaluation under traffic using finite element method

  • Chan, T.H.T.;Zhou, T.Q.;Li, Z.X.;Guo, L.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.261-279
    • /
    • 2005
  • The hot spot stress approach is usually adopted in the fatigue design and analysis of tubular welded joints. To apply the hot spot stress approach for fatigue evaluation of long span suspension bridges, the FEM is used to determine the hot spot stress of critical fatigue location. Using the local finite element models of the Tsing Ma Bridge, typical joints are developed and the stress concentration factors are determined. As a case for study, the calculated stress concentration factor is combined with the nominal representative stress block cycle to obtain the representative hot spot stress range cycle block under traffic loading from online health monitoring system. A comparison is made between the nominal stress approach and the hot spot stress approach for fatigue life evaluation of the Tsing Ma Bridge. The comparison result shows that the nominal stress approach cannot consider the most critical stress of the fatigue damage location and the hot spot stress approach is more appropriate for fatigue evaluation.

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

Image Retrieval using Variable Block Size DCT (가변 블록 DCT를 이용한 영상 검색 기법)

  • 김동우;서은주;윤태승;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.423-429
    • /
    • 2001
  • In this paper, we propose the improved method for retrieving images with DC element of DCT that is used in image compression such as JPEG/MPEG. The existing method retrieves images with DC of fixed block size DCT. In this method, the increase in the block size results in faster retrieving speed, but it lessens the accuracy. The decrease in the block size improves the accuracy, however, it degrades the retrieving speed. In order to solve this problem, the proposed method utilizes the variable block size DCT. This method first determines the existence of object regions within each block, and then creates an image region table. Based on this table, it determines the size of each block, following a simple rule; decrease the block size in the object regions, and increase the block size in the background regions. The proposed method using variable block size DCT improves about 15% in terms of the accuracy. Additionally, when there rarely exist images of same pattern, it is able to retrieve faster only by comparing the image region patterns.

  • PDF

A Study on the Development of Block Support Height Adjustment Device Using Static Nonlinear Analysis (정적 비선형 해석을 이용한 블록 지지대 높이 조정 장치 개발에 관한 연구)

  • Chunsik Shim;Gwangsan Cheon;Daseul Jeong;Kangho Kim;Mutiara Setyaning Dwityas;Deokyeon Lee;Byeongguk Jeong;Byeonghwa Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.389-399
    • /
    • 2024
  • Currently, shipyards are using ship block supports to hold various pre-erection (PE) blocks during ship construction work. The height adjustment method of the ship block support is performed by workers hammering and driving the wedge part, which requires repetitive high-load work. Accordingly, there are concerns about musculoskeletal diseases and safety accidents. To prevent safety accidents and improve work efficiency, this study developed a block support height adjustment device using a hydraulic cylinder. It was designed considering the ease of movement of the block support height adjustment device and the ease of adjusting the height of the block support by workers within the shipyard. Numerical analysis was conducted to confirm the critical points of the structural members of the designed block support height adjustment device and to verify the safety of the stress-based structure. As a result of the analysis, it was confirmed that the stress occurring at the critical point of the structural member was lower than the design allowable stress, making it structurally safe. Afterwards, the block support height adjustment device was redesigned for lightweight, and after verification of structural safety through numerical analysis, a prototype was manufactured and performance evaluation was conducted.

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Biomechanical Analysis of Biodegradable Cervical Plates Developed for Anterior Cervical Discectomy and Fusion

  • Cho, Pyung Goo;Ji, Gyu Yeul;Park, Sang Hyuk;Shin, Dong Ah
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1092-1099
    • /
    • 2018
  • Study Design: In-vitro biomechanical investigation. Purpose: To evaluate the biomechanical effects of the degeneration of the biodegradable cervical plates developed for anterior cervical discectomy and fusion (ACDF) on fusion and adjacent levels. Overview of Literature: Biodegradable implants have been recently introduced for cervical spine surgery. However, their effectiveness and safety remains unclear. Methods: A linear three-dimensional finite element (FE) model of the lower cervical spine, comprising the C4-C6 vertebrae was developed using computed tomography images of a 46-year-old woman. The model was validated by comparison with previous reports. Four models of ACDF were analyzed and compared: (1) a titanium plate and bone block (Tita), (2) strong biodegradable plate and bone block (PLA-4G) that represents the early state of the biodegradable plate with full strength, (3) weak biodegradable plate and bone block (PLA-1G) that represents the late state of the biodegradable plate with decreased strength, and (4) stand-alone bone block (Bloc). FE analysis was performed to investigate the relative motion and intervertebral disc stress at the surgical (C5-C6 segment) and adjacent (C4-C5 segment) levels. Results: The Tita and PLA-4G models were superior to the other models in terms of higher segment stiffness, smaller relative motion, and lower bone stress at the surgical level. However, the maximal von Mises stress at the intervertebral disc at the adjacent level was significantly higher in the Tita and PLA-4G models than in the other models. The relative motion at the adjacent level was significantly lower in the PLA-1G and Bloc models than in the other models. Conclusions: The use of biodegradable plates will enhance spinal fusion in the initial stronger period and prevent adjacent segment degeneration in the later, weaker period.

An Integrated MIN Circuit Design of DTW PE for Speech Recognition (음성인식용 DTW PE의 IC화를 위한 MIN회로의 설계)

  • 정광재;문홍진;최규훈;김종교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.639-647
    • /
    • 1990
  • Dynamic time warp(DTW) needs for interative calculations and the design of PE cell suitable for the operations is very important. Accordingly, this paper aims at the real time recognition design which enables large dictionary hardware realization using DTW algorithm. The DTW PE cell is seperated into three large blocks. "MIN" is the one block for counting accumulated minimum distance, "ADD" block calculates these minimum distances, and "ABS" seeks for the absolute values to the total sum of local distances. We have accomplisehd circuit design and verification for the MIN blocks, and performed MIN layout and DRC(design rule check) using 3um CMOS N-Well rule base.ing 3um CMOS N-Well rule base.

  • PDF

Assessment Factors for Seismic Performance of Multi-block Stone Pagodas (적층 석탑의 내진성능 평가요소)

  • Kim, Namhee;Koo, In Yeong;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • Recent earthquakes in Korea caused some damages to stone pagodas and thereby awakened the importance of earthquake preparedness. Korean stone pagodas which have been built with very creative style of material use and construction method are worthy of world heritage. Each stone pagoda consists of three parts: top; body; and base. However each tower is uniquely defined by its own features, which makes it more difficult to generalize the seismic assessment method for stone pagodas. This study has focused on qualitative preliminary evaluation of stone pagodas that enables us to compare the relative seismic performance across major aspects among many various Korean pagodas. Specifically an analytical model for multi-block stone pagodas is to be proposed upon the investigation of structural characteristics of stone pagoda and their dynamic behavior. A strategy for seismic evaluation of heritage stone pagodas is to be established and major evaluation factors appropriate for the qualitative evaluation are identified. The evaluation factors for overall seismic resisting behavior of stone pagodas are selected based on the dynamic motions of a rigid block and its limit state. Numerical simulation analysis using discrete element method is performed to analyze the sensitivity of each factor to earthquake and discuss some effects on seismic performance.