• Title/Summary/Keyword: electrostatic charge

Search Result 292, Processing Time 0.032 seconds

Two-dimensional Supramolecular Ordering via Hydrogen and Halogen Bondings

  • Yoon, Jong-Keon;Kim, Ho-Won;Jeon, Jeong-Heum;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.11-11
    • /
    • 2010
  • Supramolecualr ordering has been actively studied due to it's possible applications to the fabrication processes of nano-electronic devices. Van der Waals interaction and hydrogen bonding are frequently studied mechanisms for various molecular structures based on non-uniform charge distributions. Halogen atoms in molecules can have electrostatic interactions with similar strength. Big halogen atoms have strong non-uniform charge distributions. To study molecular orderings formed by hydrogen and halogen interactions, we chose a molecular system containing oxygen, hydrogen, and bromine atoms, a bromo-quinone. A two-dimensional molecular network was studied on Au(111) using a low-temperature scanning tunneling microscope. Bromo-quinonemolecules form self-assembled square grids having windmill structures. Their molecular orderings, chiral structures, and defects are explained in terms of hydrogen and halogen interactions.

  • PDF

Two-dimensional Supramolecular Structures by Hydrogen and Halogen Interactions

  • Yoon, Jong-Keon;Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.354-354
    • /
    • 2010
  • Supramolecualr ordering has been actively studied due to it's possible applications to the fabrication processes of nano-electronic devices. Van der Waals interaction and hydrogen bonding are frequently studied mechanisms for various molecular structures based on non-uniform charge distributions. Halogen atoms in molecules can have electrostatic interactions with similar strength. Big halogen atoms have strong non-uniform charge distributions. To study molecular orderings formed by hydrogen and halogen interactions, we chose a molecular system containing oxygen, hydrogen, and bromine atoms, a bromo-quinone. A two-dimensional molecular network was studied on Au(111) using a low-temperature scanning tunneling microscope. Bromo-quinone molecules form self-assembled square grids having windmill structures. Their molecular orderings, chiral structures, and defects are explained in terms of hydrogen and halogen interactions.

  • PDF

Effect of Sampling Cassettes Type used in Sampling of Airborne Carbon Nanotube(CNT) to Electrostatic Loss (공기 중 탄소나노튜브 시료채취 시 사용하는 카세트 종류가 벽면 손실에 미치는 영향)

  • Ham, Seunghon;Kim, Songha;Lee, Jinho;Lee, Naroo;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.180-186
    • /
    • 2017
  • Objectives: The purposes of this study were to compare the surface resistance of cassettes according to the material, and to evaluate the wall deposition of carbon nanotubes(CNTs) by electrostatic loss in the inner wall of the cassette. Methods: Surface resistance was measured for three types of cassettes(25 mm polypropylene conductive cowl, 25 mm and 37 mm clear styrene cassettes) with a surface resistance meter. Also, electrostatic wall loss was measured at different weights of CNTs depending on the cassette. CNTs were laid on a weight dish with the cassette for five minutes to provide sufficient time to attach on the wall. Wipe sampling was performed to collect CNTs deposited on the wall and elemental carbon, known as a surrogate for CNTs, was analyzed. Results: The cassette with conductive materials(18% of black carbon) showed the lowest surface resistance($<1.21{\times}10^3{\Omega}$). Cassettes made from clear polystyrene showed the relatively highest surface resistance(25 mm: $10.02{\times}10^9{\Omega}$, 37 mm: $10.59{\times}10^9{\Omega}$). This means that particles are more likely to stick to the internal wall of styrene cassettes due to electrostatic electricity. This may lead to an underestimation of the airborne concentration of CNTs. The experiment showed that EC was not detected when using a 25 mm conductive cowl cassette, while EC was detected at the internal wall of 25 mm and 37 mm polystyrene cassettes. Conclusions: This study confirms that cassettes with a conductive cowl have low surface resistance and are more appropriate for CNT sampling. In addition, this finding could be applied for other types of particulate, especially regarding electrostatic charge and sampling.

Effect of Dual Polymer System using Polyvinylamine for Paper Strength (Polyvinylamine을 이용한 Dual Polymer System의 지력 증강 효과)

  • Choi, Jae-Hoon;Ryu, Jeong-Yong;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.46-53
    • /
    • 2015
  • Paper strengthening system of PVAm (polyvinylamine) has been used with strong negative charge polymer for electrostatic neutralization due to strong positive charge of PVAm. Recently, because of the controversy caused by the possibility of remaining PAM monomers in white water, a search for paper strength agent that can substitute for PAM was suggested. Therefore, this study was carried out to evaluate a dry strength polymer of PVAm. Starch and CMC were used as a substitute for PAM. The dual polymer system of PVAm and anionic charge control agent such as anionic starch or CMC (carboxy methyl cellulose) were found to be very effective as strength agent compared to the chemicals based on acrylamide.

Hydrophilic and Hydrophobic Group Characteristics for Nonionic Surfactants (비이온 계면활성제에 대한 친수성기와 소수성기의 그룹 특성)

  • Ha, Youn-Shick;Son, Man-Shick;Paek, U-Hyon
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1994
  • On the basis of the principle of Bratch's electronegativity equalization, we calculated group partial charges and group electronegativities for nonionic surfactants with Pauling's elecoonegativity parameters by using numerical calculation method. From calculated outputs we have investigated structural stability of micelle, characteristics of hydrophilic and hydrophobic groups, and relation between CMC(Critical Micelle Concentraion) and group partial charge and group electronegativity of hydrophilic and hydrophobic groups for nonionic surfactants. We have known that CMC by micelle formation depends upon group partial charge and group electronegativity of hydrophilic and hydrophobic groups for surfactants. Also, the structural stability of micelle in H2O solution is related to the electric double layer by the hydrophilic group of nonionic surfactants with H atoms in water CMC is diminished by the decrease of repeating units in hydrophilic group at constant hydrophobic group and is diminished by the increments of alkyl chains in hydrophobic group at constant hydrophilic group for nonionic surfactants. In conclusion, CMC is diminished because there is no electrostatic repulsion and is diminished of Debye length by the increments of partial charge of hydrophobic group.

  • PDF

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems (열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용)

  • Jeong, Jae-Yun;Byeon, Yeong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

Optical detection of protein patterns using 1,3-bisdicyanovinylindane (1,3-bisdicyanovinylindane을 이용한 단백질 패터닝의 광학적 감지)

  • Park, Young-Min;Lee, Ji-Hye;Lee, Chang-Soo;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • In this study, we have obtained the protein patterns using the membrane patterning of soft-lithography technique. The rapid detection of protein including bovine serum albumin (BSA) was resulted from the interaction with 1,3-bisdicyanovinylindane. For the proof of the interaction between BSA and dye, the UV-vis absorption spectra of BSA and dye were observed at 278 nm and 580 nm, respectively. As expected, the absorption spectrum of the interaction between BSA and dye was observed at 584nm. The absorption spectrum of the interaction was red-shifted. In addition, the optical images of the selectively reacted protein patterns showed the distinctive change of patterned color at different pH conditions. Because the dye has negative charges, the charge of BSA at different pH conditions could influence the interaction behavior between dye and BSA. Therefore, in the case of pH 7, the selectively patterned protein substrates obtained deep blue color pattern caused by electrostatic interaction between negative charges of the dye and positive charges of the BSA. However, in the case of pH 10, selectively patterned protein substrates obtained light blue color pattern because the electrostatic interaction was relatively lower than pH 7 due to the change of overall charge distribution of BSA.

Electrostatic Interaction between Zirconia and 11-Mercaptoundecylphosphoric-acid Layer Formed on Gold Surfaces (지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.625-630
    • /
    • 2018
  • The electrostatic interactions were investigated between the zirconia and the 11-Mercaptoundecylphosphoric-acid layer formed on gold surfaces for their complex structures. For the investigation, the atomic force microscope was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the Derjaguin-Landau-Verwey-Overbeek theory to estimate the potential and charge density of the surfaces for each condition. The concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law of mass action. The pH dependence was explained with the ionizable groups on the surface. It was found that the 11-Mercaptoundecylphosphoric-acid layer had higher values for the surface charge densities and potentials than the zirconia surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the layer.

Loading Behavior of pH-Responsive P(MAA-co-EGMA) Hydrogel Microparticles for Intelligent Drug Delivery Applications (지능형 약물전달시스템을 위한 pH 감응형 P(MAA-co-EGMA) 수화젤 미세입자의 탑재거동)

  • Shin, Young-Chan;Kim, Kyu-Sik;Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • pH-responsive P(MAA-co-EGMA) hydrogel microparticles were synthesized via dispersion photo polymerization and the feasibility of the particles as the cosmetic formulation was investigated. Rh-B and the functional materials for the cosmetic application such as ascorbic acid, adenosine, EGCG, and arbutin were loaded in the P (MAA-co-EGMA) hydrogel microparticles in order to examine the interaction between the hydrogel and the loaded materials. In the loading experiments, Rh-B showed the highest loading efficiency to the P(MAA-co-EGMA) hydrogels due to the electrostatic attraction between the negative charge of the hydrogels and the positive charge of Rh-B at the ionized states. However, the functional materials showed relatively low loading efficiencies because of the electrostatic repulsions between the negative charges of both the hydrogels and the materials at the ionized states. In addition, P(MAA-co-EGMA) hydrogel microparticles showed pH-responsive release behavior of Rh-B according to the external pH changes.