• Title/Summary/Keyword: electrostatic analysis

Search Result 388, Processing Time 0.028 seconds

Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia (동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구)

  • Kim, Yoon-Shin;Lee, Cheol-Min;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol;Iida, Takao
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

Analysis on Foaming Properties of the PANI added MWNT/PU Films (PANI 첨가 MWNT/PU 필름의 발포특성)

  • Ma, Hye-Young;Choi, La-Hee;Park, Mi-Ra;Kim, Seung-Jin
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.63-63
    • /
    • 2012
  • 전자제품 패키지에 요구되는 쿠션성과 정전방전 기능을 갖는 폴리우레탄 발포 필름의 제조기술을 확립하게 되면 IT산업용에 적용 가능한 필름제품이 개발되어 ESD(정전방전, Electrostatic Dissipation) 성능을 발휘하게 됨으로서 정전기 쇼크에 의한 각종 전자제품의 오작동이나 파손 방지가 가능하게 되어 포장재, 자동차 전자제품의 하우징 등으로 사용될 수 있게 된다. 전도성 고분자인 Polyaniline (PANI)은 다른 여러 고분자와 비교하여 볼 때 다른 유형의 전도성 고분자보다 합성하기가 쉽고 높은 전기전도도를 보임은 물론 열적 및 대기 안정성이 우수하며 가격이 저렴한 장점을 가지고 있다. 본연구는 CNT 나노기술을 응용한 IT산업용 적층간지용 ESD PU발포필름의 제조 가공기술 및 상품화 개발을 수행하고자 방수, 투습방수성을 가지는 유연재료인 폴리우레탄(PU)의 1액형 PU와 DMF에 PANI의 함량을 5, 10, 15, 20, 25, 30wt%로 변화시켜 제조한 PANI/DMF 분산용액과 IPA/MWNT 3wt% 분산용액의 혼용비에 변화를 주어 $120^{\circ}C$에서 2분 건조시켜 그라운드 필름을 제조하였다. 그리고 2액형 PU와 IPA/MWNT 3wt% 분산용액과 발포제를 사용하여 발포온도 $150^{\circ}C$에서 5분간 건조시켜 발포필름을 제조하였으며 이들의 전기적 특성과 역학적 특성을 조사하였다. 제조된 필름의 전기전도성은 전기저항측정기 KEITHLEY 8009를 사용하여 부피저항과, 표면저항을 각각 측정하여 확인하였으며, 필름의 마찰 대전압은 E.S.T-7 마찰 대전압 시험기를 이용하여 표면 마찰 대전압을 측정하여 확인하고, 필름의 물리적 특성은 인장시험기를 이용하여 breaking stress, breaking strain을 측정하였다. 필름단면의 CNT 발포특성은 주사전자현미경(SEM)을 사용하여 측정하여 발포특성과 물성과의 연관성을 확인하였다. 그 결과 필름의 전기적 특성은 PANI가 30% 함량일 때 전반적으로 낮은 저항값이 측정되었으며, 마찰대전압을 측정한 결과 대부분의 시료가 0에 가까운 낮은 값을 가졌다. 필름의 물리적 인장특성은 PANI가 10wt%의 함량일 때 가장 높은 절단강도를 가졌으며 분산용액의 혼용비에 따른 경향성은 나타나지 않았다. 필름의 단면형상을 확인하여 발포특성을 분석한 결과 PANI의 함량에 따라 발포 cell의 크기는 뚜렷한 경향성을 보이지 않았으나 30wt%의 PANI/DMF 분산용액 20part(gr)와 3wt% IPA/MWNT 분산용액 40part(gr)로 제조한 시료의 cell이 가장 균일하고 고르게 발포되었으며, 3.90E+06ohm으로 가장 낮은 표면저항 값으로 측정되어 가장 좋은 전기전도성을 가짐을 확인하였다.

  • PDF

Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Herbiridal Activities of New 5-benzofuryl-2-[1-(alkoxy-imino)alkyl]-3-hydroxycyclo-hex-2-en-1-one Derivatives (새로운 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclo-hex-2-en-1-one 유도체들의 제초활성에 관한 비교분자 유사성지수 분석)

  • Sung, Nack-Do;Jung, Ki-Sung;Jung, Hoon-Sung;Chung, Young-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the herbicidal activities against in-vitro pre-emergence rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) by new 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives were studied quantitatively using comparative molecular similarity indices analysis (CoMSIA) methodology. The optimized CoMSIA model(A5: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for rice plant exhibited a good correlation with steric (31.6%) and hydrophobic (39.7%) factors of the substrate molecules, and the model (B4: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for barnyardgrass exhibited a good correlation with electrostatic (46.7%) and H-bond acceptor field (30.8%), respectively. The predicted $R_1=SF_5,\;R_2=R_3=R_4=H(P1)$ substituent (Rice plant: $pI_{50}=4.84$ & Barnyardgrass: $pI_{50}=7.21$, ${\Delta}pI_{50}=2.37$) by the model (B4) not only exhibited to the highest herbicidal activity against barnyardgrass, but also exhibited to the highest selecticity between two plants.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

Structural Charateristics of Silk Fibroin Gel on The Preparation Conditions (Silk Fibroin Gel의 제조조건에 따른 구조특성)

  • Lee, Kwang-Gill;Lee, Young-Woo;Yeo, Joo-Hong;Nam, Jin;Kweon, Hae-Young;Park, Young-Hwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • Silk fibroin dissolved in highly concentrated calcium chloride and ethanol mixture aqueous solution turned into gel under suitable conditions. Preparation conditions and properties of gel were investigated as a function of parameters such as pH of solution, fibroin concentration, glycerol concentration and molecular weight. When pH of silk fibroin aqueous solution was near the isoelectronic point(pH 3.9~4.0), gelation occurred rapidly and strength of gel was stonger than that of pH-unadjusted due to electrostatic repulsion decrease between silk fibroin macromolecules. As concentration of silk fibroin and glycerol was higher, gelation occurred more rapid. FT Infra-red spectra of freeze-dried fibroin gel showed that gelation was derived by intermolecular anti-parallel ${\beta}$-sheet structure formation. In addition to, it was found that white-precipitate occurred instead of gelation when aqueous silk fibroin was treated by enzyme(flavouzyme), however, after flavouzyme-treated silk fibroin aqueous solution was centrifugated gelation occurred instantly. The results of differential scanning thermal analysis and infra-red spectroscopy showed that thermal stability and crystallinity of enzyme-hydrolyzed fibroin are superior to those of unhydrolyzed fibroin.

  • PDF

Comparative Molecular Field Analyses on the Fungicidal Activities of N-phenylthionocarbamate Derivatives based on Different Alignment Approaches (상이한 정렬에 따른 N-phenylthionocarbamate 유도체들의 살균활성에 관한 비교 분자장 분석)

  • Sung, Nack-Do;Soung, Min-Gyu;You, Jae-Won;Jang, Seok-Chan
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) for the fungicidal activities against Rhizoctonia solani (RS) and Phytophthora capsici (PC) by N-phenyl substituents(X) of N-phenylthionocarbamate derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) methodology based on different alignment approaches. Statistical quality of CoMFA models with field fit alignment were slightly higher than that of atom based fit alignment. The optimized CoMFA models (RS: RF2 & PC: PF2) were derived from field fit alignment and combination of CoMFA fields. And the statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2$ ($r^2_{cv.}$ =RS: 0.557 & PC: 0.676) and non-cross-validated value ($r^2_{ncv.}$ =RS: 0.954 & PC: 0.968), respectively. The selective fungicidal activities between two fungi were dependence upon the electrostatic field of substrate molecule. Therefore, the fungicidal activities from CoMFA contour maps showed that the fungicidal activity will be able to increased according to the modification of X-substituents on the substrate molecules.

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase (Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건)

  • Choi, Won-Seok;Lee, Jae-Whang;Hwang, Seung-Woo;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

3D-QSAR Analysis on the Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Analogues against Gray Mold (Botrytis cinerea) (잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 3D-QSAR 분석)

  • Sung, Nack-Do;Park, Kee-Han;Jang, Seok-Chan;Soung, Min-Kyu
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity of N-phenyl-O-phenylthionocarbamate analogues against resistant and sensitive gray mold (Botrytis cinerea) (RBC & SBC) were studied quantitatively using CoMFA and CoMSIA methods. The correlation coefficient and predict- ability of optimized CoMFA model with the atom based fit alignment were better ($r^2$ & $q^2=CoMFA{\gg}CoMSIA$) than that of CoMSIA model. And statistical values of the models on the fungicidal activity against SBC were showed higher ($r^2=SBC{\gg}RBC$) than that of RBC. In CoMFA models, steric field on the activity was more influenced than electrostatic field. And in case of CoMSIA models, the influence of CoMSIA field on the activity against RBC and SBC was differ from each other but the influence of H-bond donor field was same to the two fungi. It is revealed that the selectivity factor with CoMFA model on the fungicidal activity between the two fungi was caused on the difference of steric field. Therefore, it is predicted that the large steric field with meta- and para-substituents on the N-phenyl ring will be improved to the fungicidal activity with SBC.

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.