• 제목/요약/키워드: electrospun nano-web

검색결과 7건 처리시간 0.021초

전기방사를 이용한 Pullulan Electrospun Fiber Webs의 제조 및 특성 (Preparation and Characterization of Electrospun Pullulan Webs)

  • 손태원;이건민;이동원;이주현;임학상
    • 폴리머
    • /
    • 제36권2호
    • /
    • pp.196-201
    • /
    • 2012
  • 전기방사는 휘발성 용매에 녹아있는 다양한 물질들을 마이크로 크기의 섬유로 제조하는데 사용되고 있다. 이번 연구에서는 물을 용매로 사용하여 pullulan을 전기 방사하였다. 부드러운 섬유를 얻기 위하여 pullulan 농도와 전압을 최적의 조건으로 설정하였다. Pullulan 농도는 pullulan 용액의 점도와 표면 장력에 큰 영향을 받는다. Bead 형태의 pullulan 전기방사 섬유는 5 wt%이하의 농도에서 얻어진다. Pullulan 용액의 농도가 10 wt%로 유지되고, 전압이 15 kV에 고정되었을 때, pullulan 섬유의 평균 직경은 200 nm로 감소하였다. Pullulan electrospun 섬유는 높은 용해도, 유연성, 부드러움과 강한 접착성을 보여준다.

ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가 (Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases)

  • 허윤선;이승신
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

전기방사 조건이 셀룰로오스 웹 형상에 미치는 영향 (Parametric Study on the Morphology of Electrospun Cellulose Web)

  • 정연수;정영진
    • 한국염색가공학회지
    • /
    • 제24권1호
    • /
    • pp.62-68
    • /
    • 2012
  • Cellulose was electrospun over water collector and the cellulose solution was prepared using N-methyl-morpholine N-oxide/water(nNMMO/$H_2O$). The morphology of electrospun cellulose was investigated by scanning electron microscopy (SEM). SEM images showed that the fiber formation depended on processing parameters such as solution concentration, applied electric field strength, solution feeding rate and temperature of water in coagulation bath. High concentration, low temperature of water bath, and low feeding rate were more favorable to obtain fiber morphology. All the variables affected on the fluidity of the cellulose solution and diffusion of NMMO. Low fluidity and fast diffuision of NMMO was critical for obtaining fiber morphology.

폴리아크릴로니트릴 나노섬유의 환원 및 특성 (I) (Properties of Reduced Polyacrylonitrile Nano Fiber (I))

  • 최창남;박원규;이웅의
    • 한국염색가공학회지
    • /
    • 제18권2호
    • /
    • pp.1-7
    • /
    • 2006
  • In order to prepare PAN nano fiber web, PAN/DMF solution was prepared and electrospun. The diameter of fiber was depended on the polymer concentration (7.5-15wt%) and the applied voltage (10-16kV). The average diameter of fiber increased with an increase of the polymer concentration and decreased with the applied voltage. At 7.5wt% concentration, many beads were found. So, we prepared a nano PAN fiber by electrospinning at concentration of 10wt% and 16kV. PAN fibers were reduced with litium aluminium hydride and the dyeability to acid dye was checked. The reduced nano PAN fiber showed much better dyeability compared with the reduced ordinary PAN fiber. It was considered that the increase of specific surface area have an important role in dyeing with acid dye.

나노 금 입자생성에 HAuCl4 용액의 농도와 UV 조사시간이 미치는 영향 (The Effects of Concentration of HAuCl4 Solution and UV Irradiation Time on Generation of Nano Gold Particles)

  • 안정민;이창환;김주용
    • 한국염색가공학회지
    • /
    • 제21권6호
    • /
    • pp.39-45
    • /
    • 2009
  • The importance of nano gold particles has been increased in the field of bio physics and medicine, recently. In this regard, the study aims to analyze how the harmless nano gold particles can be transformed by respective variables. In this study, electrospun PU nano-webs were impregnated with aqueous $HAuCl_4$ solution and UV light was irradiated on the webs. Au-ions were reduced to nano particles by photocatalytic reduction and these nano gold particles were characterized by SEM, UV-vis, Zetasizer, Spectrophotometer, EDS. $HAuCl_4$ solution concentration and UV irradiation time have heen examined to change the amount of absorption. Nano gold particles size and UV-Vis absorbances were increased with $HAuCl_4$ solution concentration and UV irradiation time.

나노웹을 이용한 라미네이트소재의 마찰음 특성 (Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web)

  • 정태영;이유진;이승신;조길수
    • 한국의류산업학회지
    • /
    • 제15권4호
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

전기방사된 나일론66 나노웹의 열적·기계적 특성에 전자선 조사가 미치는 영향 (The Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Electrospun Nylon 66 Nano-web)

  • 전준표;강효경;강필현
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.69-73
    • /
    • 2011
  • Polyamide 66 (PA66) nanofibers with Triallyl cyanurate (TAC) were obtained by electrospinning of formic acid and chloroform solution. Electron beam irradiation of PA66 nanofiber with and without TAC was carried out over a range of absorbed doses (20~100 kGy) in nitrogen. The characterization of the irradiated PA66 nanofibers and PA66 nanofibers with TAC was done by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and universal testing machine (UTM). The results of the SEM image analysis confirmed that the morphology of PA66 nanofibers was not altered by electron beam. The amount of TAC in PA66 nanofiber with TAC was identified by $^1H-NMR$ analysis. The degradation temperature of PA66 nanofibers with TAC at an absorbed dose of 20~100 kGy was higher than the irradiated PA66 nanofiber without TAC. On the other hand, the decreasing rate of modulus of irradiated PA66 nanofibers with TAC was less than PA66 nanofibers.