• Title/Summary/Keyword: electrospun PAN nanofiber

Search Result 14, Processing Time 0.016 seconds

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

Fabrication of Electrospun PAN/FA Nanocomposites and Their Adsorption Effects for Reducing Volatile Organic Compounds (전기방사에 의한 PAN/FA 나노 복합재의 제조 및 휘발성 유기 화합물에 대한 흡착효과)

  • Ge, Jun Cong;Wang, Zi Jian;Yoon, Sam Ki;Choi, Nag Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.702-708
    • /
    • 2018
  • Volatile organic compounds (VOCs), as a significant air pollutant, is generated mainly from the burning of fossil fuels, building materials using painting, etc. The inhalation of a certain amount of VOCs can be deleterious to human health, e.g., headaches, nausea and vomiting. In addition, it can also cause memory loss and even increase the rate of leukemia. Therefore, as one of the methods for reducing VOCs in air, polyacrylonitrile/fly ash (PAN/FA) composite nanofibrous membranes were fabricated by electrospinning. To observe their VOCs adsorption capacity, the morphological structure of PAN/FA nanofibrous mats was investigated by field emission scanning electron microscopy (FE-SEM), and the VOCs (chloroform, benzene, toluene, and xylene) adsorption capacity of PAN/FA membranes were tested by gas chromatography/mass spectrometry (GC/MS). The results indicated that the PAN nanofiber containing 40 wt. % FA powder had the smallest fiber diameter of 283 nm; they also showed the highest VOCs adsorption capacity compared to other composite membranes.

Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC (정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용)

  • Kim, Chan;Kim, Jong-Sang;Lee, Wan-Jin;Kim, Hyung-Sup;Edie, Dan D.;Yang, Kap-Seung
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • Poly(acrylonitrile)(PAN) solutions in dimethylformamide(DMF) were electrospun to prepare webs consisting of 400nm ultra-fine fibers. The webs were oxidatively stabilized, activated by steam and resulted to be activated carbon fibers(ACFs). The specific surface area was $800\~1230 m^2/g$, which showed a trend of a decrease of the surface area with an increase in activation temperature, showing opposite behavior to the other ACFs. The activation energy of the stabilized fibers for the steam activation was determined as 29.2 kJ/mol to be relatively low indicating the easier activation than that of other carbonized fibers. The ACF webs were characterized by pore size and specific surface uea which would be related to the specific capacitance of the electrical double layer capacitor (EDLC). The specific capacitances measured were 27 F/g, 25 F/g, 22 F/g at the respective activation temperature of $700^{circ}C,\;750^{\circ}C\;800^{\circ}C$, showing similar trend with the specific surface area i.e., the higher activation temperature was, the lower specific capacitance resulted.

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.