• Title/Summary/Keyword: electrorefining

Search Result 62, Processing Time 0.021 seconds

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis (다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가)

  • Yoo, Bung Uk;Park, Sung Bin;Kwon, Sang Woon;Kim, Jeong Guck;Lee, Han Soo;Kim, In Tae;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

Produce of High Purity Tin from Spent Solder by Electro Refining (폐 솔더 잉곳으로부터 전해정련에 의한 고순도 주석 생산)

  • Lee, Ki-Woong;Kim, Hong-In;Ahn, Hyo-Jin;Ahn, Jae-Woo;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • The high pure tin production was conducted from crude-tin containing waste solder by electro-refining process. The electro-refining process maintained at 0.2V produced tin with purity of 99.98%, whereas a little increase of voltage to 0.3 V resulted tin purity of 99.92%. The high pure tin of 3N in the present process was produced by fixing the voltage at 0.3V. Considering the high pure tin production, the current density was maintained within $100-120A/m^2$ with current efficiency of 94%. Addition of sulfuric acid of 20 ~ 25 g/L to the electrolyte solution was performed in order to keep Pb (lead) concentration below 100 mg/L in the final tin product. The anode slime generated during electro refining process was analyzed by X-ray diffraction (XRD) study to understand the phases of impurities in it. It detected the presence of Cu and Ag in the slime as in the form of $Cu_6Sn_5$, $Ag_3Sn$, whereas Pb occurred as $PbSO_4$ compound.