• Title/Summary/Keyword: electrorefining

Search Result 62, Processing Time 0.031 seconds

Study on the Vibrational Scraping of Uranium Product from a Solid Cathode of Electrorefiner (진동 탈리에 의한 전해정련 고체음극에서의 우라늄 생성물 회수 연구)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2015
  • A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

The Effect of Impurities on Copper Deposition in Copper Electrorefining (동 전해정련시 불순물 성분이 전기동 전착에 미치는 영향)

  • Kim, Do-Hyeong;Kim, Yong-Hwan;Kim, Gwang-Ho;Jeong, Won-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.121-121
    • /
    • 2009
  • 구리 전해정련 과정에서 전해액 중의 Arsenic과 같은 불순물 성분이 전기동의 전착에 미치는 영향을 확인하고, 전해액 중의 최대 허용 농도를 도출하고자 하였다. 전해정련 과정에서 분순물 성분이 전기동 전착에 미치는 영향을 주사전자현미경(SEM), X-선 회절(X-ray diffraction) 및 전기화학적 분석을 통해 수행하였다.

  • PDF

TECHNICAL RATIONALE FOR METAL FUEL IN FAST REACTORS

  • Chang, Yoon-Il
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.161-170
    • /
    • 2007
  • Metal fuel, which was abandoned in the 1960's in favor of oxide fuel, has since then proven to be a viable fast reactor fuel. Key discoveries allowed high burnup capability and excellent steady-state as well as off-normal performance characteristics. Metal fuel is a key to achieving inherent passive safety characteristics and compact and economic fuel cycle closure based on electrorefining and injection-casting refabrication.

Study on Governing Equations for Modeling Electrolytic Reduction Cell (전해환원 셀 모델링을 위한 지배 방정식 연구)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.245-251
    • /
    • 2014
  • Pyroprocess for treating spent nuclear fuels has been developed based on electrochemical principles. Process simulation is one of the important methods for process development and experimental data analysis and it is also a necessary approach for pyroprocessing. To date, process simulation of pyroprocessing has been focused on electrorefining and there have been not so many investigations on electrolytic reduction. Electrolytic reduction, unlike electrorefining, includes specific features of gas evolution and porous electrode and, thus, different equations should be considered for developing a model for the process. This study summarized required concepts and equations for electrolytic reduction model development from thermodynamic, mass transport, and reaction kinetics theories which are necessitated for analyzing an electrochemical cell. An electrolytic reduction cell was divided and equations for each section were listed and, then, boundary conditions for connecting the sections were indicated. It is expected that those equations would be used as a basis to develop a simulation model for the future and applied to determine parameters associated with experimental data.

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

A Study on the Electrorefining of Uranium (우라늄의 건식전해정련 연구)

  • 강영호;황성찬;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.368-372
    • /
    • 2003
  • The present study focused on obtaining the optimum conditions for depositing pure uranium onto a solid cathode. As for the results of the experiments, it was conformed that when the concentration of $UCl_3$ in the molten salt(LiCl-KCl) is more than 2wt%, pure uranium could be deposited onto a solid cathode, In addition. the effect of both the current density and the U contents in the molten salt or th ratio of uranium to salt was examined and the uranium morphology was also investigated.

  • PDF

The Effect of Direct and Variable Current on Current Efficiency of Copper Anode (조동의 전류효율에 미치는 직류 및 가변전류의 영향)

  • Ahan, Sung-Chen;Lee, Sang-Mun;Kim, Yong-Hwan;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.223-228
    • /
    • 2006
  • The current efficiency of copper anode containing impurities in copper sulfate solution for electrorefining was studied at various current type such as direct current, variable current and periodic reverse current. The passivity behavior was investigated by galvanostatic technique. The results obtained were that current efficiency of variable current was higher than those of direct current and periodic reverse current. The increased current efficiency could be explained by the formation of slime structure with lower average resistance due to variable current. The frequency of various factors in variable current condition has a greatest effect on current efficiency. It appeared that frequency increased current efficiency when increased from 1 to 4, but further increases did not have an effect.