• Title/Summary/Keyword: electrophilic substitution

Search Result 34, Processing Time 0.023 seconds

Polymerization of Anisole Derivatives Containing Allyl or Chloromethyl Group Through Aromatic Electrophilic Substitution Reaction

  • 장지영;박필정;한만정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1288-1291
    • /
    • 1997
  • 4-Allylanisole was polymerized with AlCl3 as a catalyst. The polymerization was carried out in nitroethane at various temperatures with changing the ratio of the initiator to the monomer concentration. The weight averge molecular weights measured by gel permeation chromatography in chloroform with polystyrene standards were between 1,500 and 4,700. 1H NMR spectroscopy showed that the polymerization proceeded through a stepwise aromatic electrophilic substitution reaction along with a minor chain-reaction, resulting in a branched polymer. 4-Chloromethylanisole was also polymerized with AlCl3 in nitroethane through an aromatic electrophilic substitution reaction to give a high molecular weight polymer (Mw=88,000).

Intramolecualr cyclization of a dipyrromethane by an electrophilic aromatic substitution reaction producing a new chiral compound

  • Kim, Seung Hyun;Kim, Sung Kuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.115-118
    • /
    • 2018
  • Dipyrromethane 2 functionalized with 3-chloropropyl group on the meso carbon undergoes an unusual intramolecular electrophilic aromatic substitution reaction in the presence of $NaN_3$ instead of a simple nucleophilic substitution reaction. As a result, a new chiral dipyrromethane 1 was synthesized. In this reaction, the ${\beta}$-carbon of the pyrrole ring functions as a nucleophile while the carbon next to the chlorine atom acts as an electrophile. Interestingly, this reaction progresses even in the absence of an acid catalyst. Compound 1 was fully characterized by $^1H-^1H$ and $^1H-^{13}C$ COSY NMR spectroscopic analyses and the high resolution EI mass spectrometry.

Linear and Hyperbranched Polymers via Electrophilic Substitution Reaction in Polyphosphoric $Acid/P_{2}O_{5}$

  • Choi, Ja-Young;Jeon, In-Yeop;Tan, Loon-Seng;Baek, Jong-Beom
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.195-195
    • /
    • 2006
  • A superior electrophilic substitution reaction medium that is non-toxic, relatively less corrosive, and non-volatile electrophilic substitution reaction to afford high molecular weight linear and hyperbranched polyetherketones (PEK' s) was developed. The system has very strong driving force to give extra ordinary high molecular weight linear and hyperbranched PEK' s. The reaction medium was further extended to prepare various types of copolymers and covalently grafted polymers onto carbon nanotube (CNT) or carbon nanofiber (CNF). By using characteristic hydrophilic nature of the reaction medium, hyperbranched PEK' s could be synthesized from commercially available $A_3\;+\;B_2$ monomers without network formation via selective solubility of the monomers.

  • PDF

Synthesis of Aniline and Isoquinoline derivatives using Deamination and Nitration (Deamination과 Nitration반응을 이용한 아닐린과 Isoquinoline 유도체의 합성)

  • Yoon, Cheol-Hun;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.49-57
    • /
    • 1998
  • This study is to develop a new synthetic method for the nitroarenes via non-electrophilic substitution. Direct nitration at the C-1 position of isoquinoline has never been reported and substitution in isoquinoline under the normal nitration condition occurs at C-5 and C-8. We have demonstrated a facile one-step sythetic method for the nitration of isoquinolines at the C-1 position, which involves the electrophilic attack of a $DMSO-Ac_2O$ complex, followed by nucleophilic addition of nitrate ion to this intermediate. Since the reaction is simple and mild, this method has preparative merit since 1-nitroisoquinolines are not readily accessible by other methods. Application to the synthesis of poly nitroarenes from the corresponding anilines was also described.

Photoinduced Intramolecular Substitution Reaction of Aryl Halide with Carbonyl Oxygen of Anide Group

  • Park, Yeong-Tae;Song, Myong-Geun;Kim, Moon-Sub;Kwon, Jeong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1208-1254
    • /
    • 2002
  • Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl) acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

Preparation of Polyenaryloxynitriles from Dicyanovinyl Chloride and Diphenol Derivatives in the Presence of DABCO

  • Geum, Ne Ri;Gong, Myeong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1111-1114
    • /
    • 2000
  • The kinetic study of the enaryloxynitriles via the nucleophilic vinylic substitution reaction of various phenol derivatives with 1-chloro-1-phenyl-2,2-dicyanoethene (1) was conducted in the presence of 1,4-diazabicyclo[2,2,2]octane (DABCO). Nucleo philic vinylic substitution of phenol derivatives with electrophilic olefins carrying sluggish leaving group involves a third-order reaction. The reaction was applied to solution polymerization of diphenol derivatives with p-bis(1-chrolo-2,2-dicyanovinyl)benzene (2), which yielded various polyenaryloxynitriles with moderate molecular weight.

Diastereoselectivity in the Reaction of 2-Piperidineacetates

  • 정현규;김형우;정규현
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.325-328
    • /
    • 1999
  • In the reactions of the enolates of various 2-piperidineacetates with iodomethane or trisyl azide, the anti isomer was always predominant over the syn one, independent of the stereochemistry of the piperidineacetates. The piperidineacetates having OTBDMS moiety at C5 proceeded more diastereoselectively than the compounds without the substituent. The diastereoselectivity could be explained by perpendicular model for the electrophilic substitution reaction.

Theoretical Studies on Electrophilic Substitution of Five-membered Heteroaromatic Compounds with Isopropyl Cation (5각-이종원자 방향족 고리화합물과 이소프로필 양이온간의 친전자 치환반응에 관한 이론적 연구 (1))

  • Lee, Ik Choon;Kim, Chang Gon;Lee, Bon Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.248-254
    • /
    • 1990
  • Theoretical studies on the electrophilic substitution reactions of five-membered heteroaromatic compounds, furan, pyrrole and thiophene, with isopropyl cation were carried out using the MNDO method. The results indicated that site selectivities of ${\alpha},{\beta}$ and hetero-atoms are not controlled by electrostatic interactions but are determined mainly by charge trasfer stabilization between the HOMO of heteroaromatics and the LUMO of the electrophile. The reactivity order for ${\alpha}\;and\;{\beta}$ positions was pyrrole > furan > thiophene, in agreement with the solution-phase as well as the gas-phase experimental results.

  • PDF