• Title/Summary/Keyword: electrophilic aromatic substitution

Search Result 6, Processing Time 0.017 seconds

Polymerization of Anisole Derivatives Containing Allyl or Chloromethyl Group Through Aromatic Electrophilic Substitution Reaction

  • 장지영;박필정;한만정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1288-1291
    • /
    • 1997
  • 4-Allylanisole was polymerized with AlCl3 as a catalyst. The polymerization was carried out in nitroethane at various temperatures with changing the ratio of the initiator to the monomer concentration. The weight averge molecular weights measured by gel permeation chromatography in chloroform with polystyrene standards were between 1,500 and 4,700. 1H NMR spectroscopy showed that the polymerization proceeded through a stepwise aromatic electrophilic substitution reaction along with a minor chain-reaction, resulting in a branched polymer. 4-Chloromethylanisole was also polymerized with AlCl3 in nitroethane through an aromatic electrophilic substitution reaction to give a high molecular weight polymer (Mw=88,000).

Intramolecualr cyclization of a dipyrromethane by an electrophilic aromatic substitution reaction producing a new chiral compound

  • Kim, Seung Hyun;Kim, Sung Kuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.115-118
    • /
    • 2018
  • Dipyrromethane 2 functionalized with 3-chloropropyl group on the meso carbon undergoes an unusual intramolecular electrophilic aromatic substitution reaction in the presence of $NaN_3$ instead of a simple nucleophilic substitution reaction. As a result, a new chiral dipyrromethane 1 was synthesized. In this reaction, the ${\beta}$-carbon of the pyrrole ring functions as a nucleophile while the carbon next to the chlorine atom acts as an electrophile. Interestingly, this reaction progresses even in the absence of an acid catalyst. Compound 1 was fully characterized by $^1H-^1H$ and $^1H-^{13}C$ COSY NMR spectroscopic analyses and the high resolution EI mass spectrometry.

Application of Pseudo Molecular Complexes (II). A New Mechanism for Aromatic Substitution (유사분자 착물의 응용 (제 2 보). 새로운 방향족 치환반응 기구)

  • Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.179-185
    • /
    • 1975
  • A new mechanism is proposed for aromatic substitution, involving the formation of pseudo molecular complexes at the transition state. It accounts for the addition reactions of aromatic compounds with double bond reagents such as ozone, somium tetraoxide and carbene as well as all of the features of electrophilic substitution reactions. The pseudo molecular complex has been proved to be formed by quantum-chemical considerations using the simple Huckel method.

  • PDF

Photoinduced Intramolecular Substitution Reaction of Aryl Halide with Carbonyl Oxygen of Anide Group

  • Park, Yeong-Tae;Song, Myong-Geun;Kim, Moon-Sub;Kwon, Jeong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1208-1254
    • /
    • 2002
  • Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl) acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

Novel Syntheses of 5-Aminothieno[2,3-c]pyridazine, Pyrimido[4',5':4,5]thieno[2,3-c]pyridazine, Pyridazino[4',3':4,5]thieno-[3,2-d][1,2,3]triazine and Phthalazine Derivatives

  • El Gaby, Mohamed S.A.;Kamal El Dean, Adel M.;Gaber, Abd El Aal M.;Eyada, Hassan A.;Al Kamali, Ahmed S.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1181-1187
    • /
    • 2003
  • Condensation of 4-cyano-5,6-dimethyl-3-pyridazinone 1 with aromatic aldehydes gave the novel styryl derivatives 2a-c. Refluxing of compound 2a with phosphorus oxychloride furnished 3-chloropyridazine derivative 3. Compound 3 was reacted with thiourea and produced pyridazine-3(2H)thione 4. Thieno[2,3-c]- pyridazines 5a-e were achieved by cycloalkylation of compound 4 with halocompounds in methanol under reflux and in the presence of sodium methoxide. Also, refluxing of compound 4 with N-substituted chloroacetamide in the presence of potassium carbonate afforded thienopyridazines 6a-e. Cyclization of compound 6 with some electrophilic reagents as carbon disulfide and triethyl orthoformate furnished the novel pyrimido[4',5':4,5]thieno[2,3-c]pyridazines 12 and 13a-c, respectively. Diazotisation of compound 6 with sodium nitrite in acetic acid produced the pyridazino[4',3':4,5]thieno[3,2-d][1,2,3]triazines 14a-c. Ternary condensation of compound 1, aromatic aldehydes and malononitrile in ethanol containing piperidine under reflux afforded the novel phthalazines 16a-c. Compound 3 was subjected to some nucleophilic substitution reactions with amines and sodium azide and formed the aminopyridazines 17a, b and tetrazolo[1,5-b]-pyridazine 19, respectively. The structures of the synthesized compounds were established by elemental and spectral analyses.