• Title/Summary/Keyword: electronic stability control

Search Result 509, Processing Time 0.031 seconds

Integrated Chassis Control for the Driving Safety (주행 안전을 위한 통합 샤시 제어)

  • Cho, Wan-Ki;Yi, Kyong-Su;Chang, Nae-Hyuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.646-654
    • /
    • 2010
  • This paper describes an integrated chassis control for a maneuverability, a lateral stability and a rollover prevention of a vehicle by the using of the ESC and AFS. The integrated chassis control system consists of a supervisor, control algorithms and a coordinator. From the measured and estimation signals, the supervisor determines the vehicle driving situation about the lateral stability and rollover prevention. The control algorithms determine a desired yaw moment for lateral stability and a desired longitudinal force for the rollover prevention. In order to apply the control inputs, the coordinator determines a brake and active front steering inputs optimally based on the current status of the subject vehicle. To improve the reliability and to reduce the operating load of the proposed control algorithms, a multi-core ECU platform is used in this system. For the evaluation of this system, a closed loop simulations with driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy.

Sliding Mode Control of 5-link Biped Robot Using Wavelet Neural Network

  • Kim, Chul-Ha;Yu, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2279-2284
    • /
    • 2005
  • Generally, biped walking is difficult to control because it is a nonlinear system with various uncertainties. In this paper, we design a robust control system based on sliding-mode control (SMC) of 5-link biped robot using the wavelet neural network(WNN), in order to improve the efficiency of position tracking performance of biped locomotion. In our control system, the WNN is utilized to estimate uncertain and nonlinear system parameters, where the weights of WNN are trained by adaptive laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified by computer simulations.

  • PDF

Research and Stability Analysis of Active-Disturbance-Rejection-Control-Based Microgrid Controllers

  • Xu, Xiaoning;Zhou, Xuesong;Ma, Youjie;Liu, Yiqi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1611-1624
    • /
    • 2017
  • With the rapid development of microgrid technology, microgrid projects are no longer limited to laboratory demonstrations and pilot platforms. It shows greater value in practical applications. Hence, the smooth interaction between a microgrid and the main grid plays a critical role. In this paper, a control method based on active disturbance rejection control (ADRC) is proposed in order to realize seamless transitions between grid-connected and islanding operation modes and stable operation with variable loads. It is verified by simulations that the proposed ADRC-based method features better performance when compared to conventional proportional-integral-differential (PID) control. Meanwhile, the stability of the third-order extended state observer (ESO) in second-order ADRC is validated by using Lyapunov stability criteria.

A Decentralized Fuzzy Controller for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • 김문환;이호재;박진배;차대범;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.141-144
    • /
    • 2001
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (75) fuzzy system using the rigorous tool - Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.

  • PDF

Evaporator Superheat Control of a Multi-type Air-conditioning/Refrigeration System (멀티형 공조/냉동시스템의 증발기 과열도 제어)

  • Kim, Tae-Sub;Hong, Keum-Shik;Sohn, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.712-717
    • /
    • 2001
  • This paper investigates the control problem of evaporator superheat, i.e., the difference between the temperature of the refrigerant at the entrance region of an evaporator and that at the exit region, for multi-type air-conditioning/refrigeration systems. Mathematical equations describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, the transfer functions from the current input of the electronic expansion valve to wall temperatures of evaporator tube at two-phase region and superheated region, respectively, are derived. The stability and performance of the closed loop system with a PI controller are analyzed by Nyquist stability criterion. Simulation results are provided.

  • PDF

Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

  • Koo, Geun Bum;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.724-732
    • /
    • 2016
  • In this paper, a sampled-data observer-based decentralized fuzzy control technique is proposed for a class of nonlinear large-scale systems, which can be represented to a Takagi-Sugeno fuzzy system. The premise variable is assumed to be measurable for the design of the observer-based fuzzy controller, and the closed-loop system is obtained. Based on an exact discretized model of the closed-loop system, the stability condition is derived for the closed-loop system. Also, the stability condition is converted into the linear matrix inequality (LMI) format. Finally, an example is provided to verify the effectiveness of the proposed techniques.

A Study on the Improvement of Driving Stability for the Motorized Manual Wheelchair INMEL-VII (전동화 수동 휠체어 INMEL-VII의 주행 안정성 개선에 관한 연구)

  • Jeong, Dong-Myeong;Go, Su-Bok;Kim, Ju-Myeong
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.543-554
    • /
    • 1995
  • This paper describes the improvement of driving stability and the control system for INMEL-VII which is motorized manual wheelchair to satisfy requirements of the disabled The INMEL-VI was based on high maneuverability of the omnidirection drive and safety But the results of field tests about two years showed some problems to the disabled in daily life such as driving stability, Pm switching noise, and rotation of motor without driving command on negative slope. To solve the problems due to an increased DC motor power and applied to direct connection method in INMEL- VII. It improved the driving circuits and set switching frequency to 5KHz to eliminate the switching noise caused by PWM control of DC motor, As compare with the INMEL-VI, INMEL-VII is improved in driving stability by transfer the weight center to forward. The results of field testing proved the improvement of the driving stability and software algorithm It has been estimated to have a hlgh practical use for powered walking aids to the disabled's daily life.

  • PDF

The Effect Assessment Method of Control and Protection Systems on Transient Stability of Power Systems

  • Miki, Tetsushi;Sugino, Ryuzaburou;Kono, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.736-740
    • /
    • 2004
  • In order to overcome the problems of simulation methods, the power system transient stability assessment method using critical fault clearing time functions has been developed. Using the above method, this paper has developed the new method which can assess accurately and efficiently the effects of control and protection systems on transient stability which is the most important characteristic to assess in power systems. At first, critical fault clearing time functions CCT(W:load) are defined by taking notice of the fact that transient stability is mainly controlled by fault clearing time and load. Next, the method to be enable to assess accurately and efficiently the effects of control and protection systems on transient stability has been newly developed by using the above functions. Finally, it has been applied to the effect assessment in the occurrence of a three-phase fault in a model power system. Results of application have been clarified its effectiveness.

  • PDF

A Study on the Stability of Neural Network Control Systems (신경망 제어 시스템의 안정도에 관한 연구)

  • Kim, Eun-Tai;Lee Hee-Jin;Kim Seung-Woo;Park Mi-Gnon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.21-31
    • /
    • 2000
  • In this paper, an analysis of the stability for a class of discrete-time neural network control systems is presentd. Based on Lyapunov's direct method, a sufficient stability condition for the neural network control systems is systematically derived and the modified back propagation algorithm which reflects the derived stability condition is suggested. The modified BP originates from the derived sufficient condition and guarantees the exponential stability of the resulting trained closed system. Finally, computer simulation is included to show an example where the derived stability condition and the BP modified bythe condition is used to train the control plant.

  • PDF

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.