• Title/Summary/Keyword: electronic prediction

Search Result 774, Processing Time 0.032 seconds

Accurate Prediction of VVC Intra-coded Block using Convolutional Neural Network (VVC 화면 내 예측에서의 딥러닝 기반 예측 블록 개선을 통한 부호화 효율 향상 기법)

  • Jeong, Hye-Sun;Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.477-486
    • /
    • 2022
  • In this paper, we propose a novel intra-prediction method using convolutional neural network (CNN) to improve a quality of a predicted block in VVC. The proposed algorithm goes through a two-step procedure. First, an input prediction block is generated using one of the VVC intra-prediction modes. Second, the prediction block is further refined through a CNN model, by inputting the prediction block itself and reconstructed reference samples in the boundary. The proposed algorithm outputs a refined block to reduce residual signals and enhance coding efficiency, which is enabled by a CU-level flag. Experimental results demonstrate that the proposed method achieves improved rate-distortion performance as compared a VVC reference software, I.e., VTM version 10.0.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

A Multithreaded Implementation of HEVC Intra Prediction Algorithm for a Photovoltaic Monitoring System

  • Choi, Yung-Ho;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.256-261
    • /
    • 2012
  • Recently, many photovoltaic systems (PV systems) including solar parks and PV farms have been built to prepare for the post fossil fuel era. To investigate the degradation process of the PV systems and thus, efficiently operate PV systems, there is a need to visually monitor PV systems in the range of infrared ray through the Internet. For efficient visual monitoring, this paper explores a multithreaded implementation of a recently developed HEVC standard whose compression efficiency is almost two times higher than H.264. For an efficient parallel implementation under a meshbased 64 multicore system, this work takes into account various design choices which can solve potential problems of a two-dimensional interconnects-based 64 multicore system. These problems may have not occurred in a small-scale multicore system based on a simple bus network. Through extensive evaluation, this paper shows that, for an efficient multithreaded implementation of HEVC intra prediction in a mesh-based multicore system, much effort needs to be made to optimize communications among processing cores. Thus, this work provides three design choices regarding communications, i.e., main thread core location, cache home policy, and maximum coding unit size. These design choices are shown to improve the overall parallel performance of the HEVC intra prediction algorithm by up to 42%, achieving a 7 times higher speed-up.

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

The Prediction of Nozzle Trajectory on Substrate for the Improvement of Panel-Scale Etching Uniformity (에칭공정에서의 Panel-Scale Etching Uniformity 향상을 위한 에칭노즐 궤적예측에 관한 연구)

  • Jeong, Gi-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.160-160
    • /
    • 2008
  • In practical etching process, etch ant is sprayed on the metal-deposited panel through nozzles collectively connected to the manifold and that panel is usually composed of many PCB(printed circuit board)'s. The etching uniformity, the difference between individual PCB's on the same panel, has become one of most important features of etching process. In this paper, the prediction of nozzle trajectory has been performed by the combination of algebraic formula and numerical simulation. With the pre-determined geometrical factors of nozzle distribution, the trajectories of individual nozzles were predicted with the change of process operational factors such as panel speed, nozzle swing frequency and so on. As results, two dimensional distribution of impulsive force of etchant spray which could be considered as a key factor determining the etching performance have been successfully obtained. Though only qualitative prediction of etching uniformity have been predicted by the process developed in this study, the expansion to the quantitative prediction of etching uniformity is expected to be apparent by this study.

  • PDF

A Study on the Azimuth Direction Extrapolation for SAR Image Using ω-κ Algorithm (ω-κ 알고리즘을 이용한 SAR 영상의 방위각 방향 외삽 기법 연구)

  • Park, Se-Hoon;Choi, In-Sik;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1014-1017
    • /
    • 2012
  • In this paper, we introduce a method which enhances the azimuth resolution to obtain the high-resolution SAR image. We used ${\omega}-k$ algorithm to obtain the SAR image and extrapolation using auto-regressive(AR) method to enhance the azimuth resolution in the 2-D frequency domain. The AR method is a linear prediction model-based extrapolation technique. In the result, we showed the performance comparison with respect to the target range and the prediction order of Burg algorithm which is one of AR method.

Prediction of Wind Power Generation using Deep Learnning (딥러닝을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.329-338
    • /
    • 2021
  • This study predicts the amount of wind power generation for rational operation plan of wind power generation and capacity calculation of ESS. For forecasting, we present a method of predicting wind power generation by combining a physical approach and a statistical approach. The factors of wind power generation are analyzed and variables are selected. By collecting historical data of the selected variables, the amount of wind power generation is predicted using deep learning. The model used is a hybrid model that combines a bidirectional long short term memory (LSTM) and a convolution neural network (CNN) algorithm. To compare the prediction performance, this model is compared with the model and the error which consist of the MLP(:Multi Layer Perceptron) algorithm, The results is presented to evaluate the prediction performance.

A Human Movement Stream Processing System for Estimating Worker Locations in Shipyards

  • Duong, Dat Van Anh;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.135-142
    • /
    • 2021
  • Estimating the locations of workers in a shipyard is beneficial for a variety of applications such as selecting potential forwarders for transferring data in IoT services and quickly rescuing workers in the event of industrial disasters or accidents. In this work, we propose a human movement stream processing system for estimating worker locations in shipyards based on Apache Spark and TensorFlow serving. First, we use Apache Spark to process location data streams. Then, we design a worker location prediction model to estimate the locations of workers. TensorFlow serving manages and executes the worker location prediction model. When there are requirements from clients, Apache Spark extracts input data from the processed data for the prediction model and then sends it to TensorFlow serving for estimating workers' locations. The worker movement data is needed to evaluate the proposed system but there are no available worker movement traces in shipyards. Therefore, we also develop a mobility model for generating the workers' movements in shipyards. Based on synthetic data, the proposed system is evaluated. It obtains a high performance and could be used for a variety of tasksin shipyards.

Prediction of Acoustic Loads Generated by KSR-III Propulsion System (KSR-III 로켓의 추진기관에 의한 음향 하중 예측)

  • Park, Soon-Hong;Chun, Young-Doo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.384.1-384
    • /
    • 2002
  • Rocket propulsion systems generate very high level noise (acoustic loads), which is due to supersonic jet of rocket propulsion system. In practice, the sound power level of rocket propulsion systems is over 180 ㏈. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunctioning of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. (omitted)

  • PDF