• Title/Summary/Keyword: electronic communication networks

Search Result 673, Processing Time 0.028 seconds

Resource Allocation Based on Location Information in D2D Cellular Networks (D2D 셀룰러 네트워크에서 위치기반 자원할당)

  • Kang, Soo-Hyeong;Seo, Bang-Won;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.750-757
    • /
    • 2017
  • Recently, mobile internet traffic has rapidly increased as the huge increase of the smart phone and mobile devices. D2D get attention, because D2D is known that it reduce the traffic load of the base station and also improves the reliability of the network performance. However, D2D has a problem that the efficiency decreases as interference is increased. In this paper, we propose a resource allocation scheme to use the resources efficiently when the D2D link share the cellular resources in the cellular network based the uplink. D2D communication utilizes the location information for allocating resources when the eNB know the location of all devices. The proposed scheme select some cellular user using location informations in order to ensure performance of the D2D communication. and D2D link choose cellular user that performs resource allocation using only selected cellular user. Simulation results show optimal value of resource selection in order to ensure most performance of the D2D communication.

Energy-Efficient Power Control for Underlaying D2D Communication with Channel Uncertainty: User-Centric Versus Network-Centric

  • Ding, Jianfeng;Jiang, Lingge;He, Chen
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.589-599
    • /
    • 2016
  • Most existing resource management problem models arise from the original desire of allocating resources in either a user-centric or network-centric manner. The difference between their objectives is obvious: user-centric methods attempt to optimize the utility of individual users, whereas network-centric models intend to optimize the collective utilities of the entire network. In this paper, from the above two aspects, we analyze the robust power control problem in device-to-device (D2D) communication underlaying cellular networks, where two types of channel uncertainty set (e.g., ellipsoidal and column-wise) are considered. In the user-centric method, we formulate the problem into the form of a Stackelberg game, where the energy efficiency (EE) of each user is the ingredient of utility function. In order to protect the cellular user equipment's (CUE) uplink transmission, we introduce a price based cost function into the objectives of D2D user equipment (DUE). The existence and uniqueness of the game with the influence of channel uncertainty and price are discussed. In the network-centric method, we aim to maximize the collective EE of CUEs and DUEs. We show that by the appropriate mathematical transformation, the network-centric D2D power control problem has the identical local solution to that of a special case of the user-centric problem, where price plays a key role. Numerical results show the performance of the robust power control algorithms in the user-centric and network-centric models.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Trends in Neuromorphic Photonics Technology (뉴로모픽 포토닉스 기술 동향)

  • Kwon, Y.H.;Kim, K.S.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

Feasibility of Interference Alignment for Full-Duplex MIMO Cellular Networks (전 이중 다중 안테나 셀룰라 네트워크의 간섭 정렬 타당성)

  • Kim, Kiyeon;Yang, Janghoon;Jeon, Sang-Woon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2389-2391
    • /
    • 2015
  • The feasibility condition of interference alignment (IA) for full-duplex (FD) multiple-input multipleoutput (MIMO) cellular networks is considered. The necessary and sufficient condition on the IA feasibility is established, characterizing the achievable sum degrees of freedom (DoF). The results demonstrate that FD operation with appropriate IA is able to improve the sum DoF on the conventional half-duplex operation.

HEVA: Cooperative Localization using a Combined Non-Parametric Belief Propagation and Variational Message Passing Approach

  • Oikonomou-Filandras, Panagiotis-Agis;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.397-410
    • /
    • 2016
  • This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) time-of-arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50% of their complexity. The superiority of VB over other clustering techniques is also shown.

Cross-Layer and End-to-End Optimization for the Integrated Wireless and Wireline Network

  • Gong, Seong-Lyong;Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.554-565
    • /
    • 2012
  • In this paper, we study a cross-layer and end-to-end optimization problem for the integrated wireless and wireline network that consists of one wireline core network and multiple wireless access networks. We consider joint end-to-end flow control/distribution at the transport and network layers and opportunistic scheduling at the data link and physical layers. We formulate a single stochastic optimization problem and solve it by using a dual approach and a stochastic sub-gradient algorithm. The developed algorithm can be implemented in a distributed way, vertically among communication layers and horizontally among all entities in the network, clearly showing what should be done at each layer and each entity and what parameters should be exchanged between layers and between entities. Numerical results show that our cross-layer and end-to-end optimization approach provides more efficient resource allocation than the conventional layered and separated optimization approach.

Concealing Communication Paths in Wireless Sensor Networks (무선 센서 네트워크에서의 통신 경로 은닉)

  • Tscha, Yeong-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1353-1358
    • /
    • 2014
  • Tremendous amount of dummy packets are generally generated for faking over a wireless sensor network so as to keep the location privacy of nodes on the communication paths against the global eavesdropping. In this paper, a scoped-flooding protocol is designed for transferring data between each source and mobile sink(aka, basestation) where, the only nodes within the scope are allowed to issue dummy packets at every idle time so that the location privacy of the nodes on the paths is kept and the amount of dummy packets is reduced to the extend of the flooding scope. The size of the flooding diameter can be taken into consideration of the privacy level and the communication cost. We design a detailed specification of the protocol and verify several properties.

Prediction Model of Energy Consumption of Wired Access Networks using Machine Learning (기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델)

  • Suh, Yu-Hwa;Kim, Eun-Hoe
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2021
  • Green networking has become a issue to reduce energy wastes and CO2 emission by adding energy managing mechanism to wired data networks. Energy consumption of the overall wired data networks is driven by access networks, expect for end devices. However, on a global scale, it is more difficult to manage centrally energy, measure and model the real energy use and energy savings potential of the access networks. This paper presented the multiple linear regression model to predict energy consumption of wired access networks using supervised learning of machine learning with data collected by existing investigated materials, actual measured values and results of many models. In addition, this work optimized the performance of it by various experiments and predict energy consumption of wired access networks. The performance evaluation of the regression model was achieved by well-knowned evaluation metrics.

Performance Analysis of TCP with Adaptive Snoop Module in Wired and Wireless Communication Environments (유/무선 통신 환경에서 적응형 Snoop 모듈을 이용한 TCP 성능 분석)

  • Kim, Myung-Jin;Lim, Sae-Hoon;Kim, Doo-Yong;Kim, Ki-Wan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • TCP works well in wired networks where packet losses mainly occur due to congestion in data traffic. In wireless networks TCP does not differentiate packet losses from transmission errors or from congestion, which could lead to degrade the network performance. Several methods have been proposed to improve TCP performance over wireless links. Among them the Snoop module working at the base station is the popular method. In this paper, it is shown that the performance of Snoop largely depends upon the transmission link errors and the amount of data traffic. Also, our research shows that the local retransmission timeout value of Snoop can affect throughput. From the simulation results we suggest how to effectively use the Snoop algorithm considering data traffic and transmission link errors. It is expected that the proposed adaptive method will contribute to improving the network performance reducing the burden of the processes for data traffic.