• 제목/요약/키워드: electron transport properties

검색결과 289건 처리시간 0.026초

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying

  • Lwin, May Likha;Yoon, Sang-min;Madavali, Babu;Lee, Chul-Hee;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.120-125
    • /
    • 2016
  • P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Optical Properties of ZnO Soccer Ball Structures by Using Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, So-A-Ram;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.248-248
    • /
    • 2011
  • ZnO was grown on a Au-catalyzed Si(100) substrate by using a simple vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. The ZnO grown at 800$^{\circ}C$ had a soccer ball structure with diameters of <500 nm. The ZnO soccer ball structure was, for the first time, observed in this work. The optical properties of the ZnO soccer balls were investigated by photoluminescence (PL). In the room-temperature (RT) PL of the ZnO soccer balls, a strong near-band-edge emission (NBE) and a weak deep-level emission were observed at 3.25 and 2.47 eV (green emission), respectively. The weak deep-level emission (DLE) at around 2.47 eV (green emission) is caused by impurities and structural defects. The FWHM of the NBE peak from the ZnO soccer balls was 110 meV. In addition, the PL intensity ratio of the NBE to DLE was about 4. The temperature-dependent PL was also carried out to investigate the mechanism governing the quenching behavior of the PL spectra.

  • PDF

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Experiment of Drifting Mobilities of Holes and Electrons in Stabilized a-Se Film

  • Kang, Sang-Sik;Park, Ji-Koon;Park, Jang-Yong;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.9-12
    • /
    • 2003
  • The electrical properties of stabilized amorphous selenium typical of the material used in direct conversion x-ray imaging devices are reported. Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350nm was illuminated on the surface of a-Se with thickness of 400 $\mu\textrm{m}$. The photo induced signals of a-Se film as a function of time were measured. The measured transit times of hole and electron were about 8.73${\mu}\textrm{s}$ and 229.17${\mu}\textrm{s}$, respectively. The hole and electron drift mobilities decreases with increase of electric field up to 4V/$\mu\textrm{m}$. Above 4V/$\mu\textrm{m}$, the measured drift mobilities exhibited no observable dependence with respect to electric field. The experimental results showed that the hole and electron drifting mobility were 0.04584 $\textrm{cm}^2$ V$\^$-1/s$\^$-1/ sand 0.00174 $\textrm{cm}^2$V$\^$-1/s$\^$-1/ at 10 V/$\mu\textrm{m}$.

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

ITO/$Alq_3$/Al의 주파수 변화에 따른 유전 특성 (Dielectric Properties depending on Frequency in ITO/$Alq_3$/Al)

  • 오용철;이동규;김진사;신철기;이성일;김충혁;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.292-293
    • /
    • 2006
  • We have Investigated dielectric properties depending on bias voltage in organic lightemitting diodes using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light emitting diodes using impedance characteristics measurement by the auto-balancing bridge technique and equivalent cirrcuit of ITO/$Alq_3$/Al. Impedance characteristics was measured complex impedance Z and phase ${\theta}$ in the frequency range of 40 [Hz] to $10^8$ [Hz]. We obtained complex electrical conductivity, dielectric constant, and loss tangent ($tan{\delta}$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

Alq3를 이용한 유기 발광 소자의 주파수에 변화에 따른 유전 특성 (Dielectric Properties depending on Frequency in Organic Light-emitting Diodes using $Alq_3$)

  • 오용철;이동규;정동회;이호식;박건호;김태완;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.293-294
    • /
    • 2005
  • We have investigated dielectric properties depending on frequency in organic light -emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. impedance characteristics was measured complex impedance Z and phase $\Theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent (tan$\delta$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

유기 발광 다이오드(ITO/$AIq_3$/AI)의 온도 변화에 따른 유전 특성 (Dielectric Properties Depending on Temperature in Organic Light-emitting Diodes(ITO/$AIq_3$/AI))

  • 오용철;이동규;조춘남;안준호;정동희;이성일;김귀열;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.74-75
    • /
    • 2006
  • We have investigated dielectric properties depending on temperature in organic light-emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using characteristics of impedance. he Impedance characteristics was measured complex impedance Z and phase $\theta$ in the temperature range of 10 K to 300 K. We obtained complex electrical conductivity, dielectric constant and loss tangent ($tan{\delta}$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF