• Title/Summary/Keyword: electron transport

Search Result 984, Processing Time 0.029 seconds

ULTRASTRUCTURAL ANALYSIS OF TOOTH PULP AFFERENTS TERMINALS IN THE MEDULLARY DORSAL HORN OF THE RAT (치수유래 구심성 신경섬유의 삼차신경 감각핵군에서의 연접특성)

  • Bae, Yong-Chul;Lee, Eun-Hee;Choy, Min-Ki;Hong, Su-Hyung;Kim, Hyun-Jung;Na, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.219-227
    • /
    • 2001
  • Little is known about processing mechanism of pain sensation of the oral cavity at the 1st synapse of trigeminal sensory nuclei. Serial ultrathin sections of tooth pulp afferent terminals, identified by the transganglionic transport of 1% wheatgerm agglutinin conjugated horseradish peroxidase, were investigated with electron microscope. Quantitative ultrastructural analysis was performed on digitizing tablet connected to Macintoshi personal computer (software; NIH Image 1.60, NIH, Bethesda, MD). Labeled boutons could be classified into two types by the shapes of containing vesicles : S bouton, which contained mainly spherical vesicles (Dia. 45-55 nm) and few large dense cored vesicles (Dia, 80-120nm), and LDCV bouton, which contained spherical vesicles as well as large number of large dense cored vesicles. Most of the parameters on the ultrastructural characteristic and synaptic organization of labeled boutons were similar between S and LDCV boutons, except shapes of containing vesicles. Majority of the labeled boutons showed simple synaptic arrangement. The labeled boutons were frequency presynaptic to dendritic spine, and to a lesser extent, dendritic shaft. They rarely synapsed with soma and adjacent proximal dendrite. A small proportion of labeled boutons made synaptic contacts with presynaptic, pleomorphic vesicles containing endings and synaptic triad. Morphometric parameters of labeled boutons including volume and surface area, total apposed area, mitochondrial volume, active zone area, vesicle number and density showed wide variation and these were not significantly different between S and LDCV boutons. The present study revealed characteristic features on ultrastructure and synaptic connection of pulpal afferents which may involved in transmission of oral pain sensation.

  • PDF

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.