• Title/Summary/Keyword: electromagnetic vibration

Search Result 405, Processing Time 0.025 seconds

Vibration Suppression of Beam by Using Electromagnetic Shunt Damper (전자기 션트 감쇠기를 이용한 빔의 진동억제에 관한 연구)

  • Cheng, Tai-Hong;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • In this paper the electromagnetic shunt damper was newly employed for vibration suppression of the flexible structures. The electromagnetic shunt damper consists of a coil and a permanent magnet. The ends of the coil were connected to the RLC shunt circuit. The numerical solutions of resonant frequency of the shunt circuits were calculated by using Pspice. The vibration and damping characteristics of the flexible beams with the electromagnetic shunt damper were investigated by tuning the circuit parameters. Also, the effect of the magnetic intensity on the shunt damping was studied with the variation of the gap between the aluminum beam and the permanent magnet. Present results show that the magnet shunt damper can be successfully applied to reduce the vibration of the flexible structures.

  • PDF

Vibration control of the vibration isolation system using the electromagnetic actuator (전자석 액츄에이터에 의한 수동방진 테이블의 제어)

  • Choi, Hyun;Lee, Jung-Youn
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

Vibration Analysis of a Generator-Stator Core Under Electromagnetic Excitation (전자기력에 의한 발전기 고정자 코어의 진동 해석)

  • 김철홍;주영호;박종포
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.747-753
    • /
    • 1999
  • This paper presents results of vibration analysis of a generator-stator core for 500 MW fossil power plant. A finite element analysis using a commercial S/W is performed to estimate alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, acting on the core, and then to calculate forced response of the core. Results are compared with design requirements.

  • PDF

A Study on the Characteristic of Noise and Vibration in 3-phase Induction Motor for the Forklift (전동 지게차용 3상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper presents the reduction of acoustic noise generated by electromagnetic force in an induction motor of the electrical forklift. After summarizing the electromagnetic excitation forces due to the interaction between the stator/rotor slot permeance and the stator winding magnetomotive force, the effects of the electromagnetic force on the noise and vibration of an induction motor are analyzed. In order to experimentally identify the noise sources of the motor, the signal analyses for noise and vibration are performed by using waterfall plots of noise and vibration spectrums. It is found that severe noise and vibration are caused by the electromagnetic force when the mode number of the excitation shape for a stator is low. Furthermore, it is verified that the motor noise is amplified if the excitation frequency of the electromagnetic force coincides with one of the natural frequencies of the stator. It is experimentally demonstrated that this severe noise can be considerably reduced by structure modifications. Finally, some design guidelines are suggested to develop an induction motor with a low level of noise.

Analysis of Vibration and Electromagnetic Forces on a Generator End-winding for 500 MW Fossil Power Plant (500MW 급 대형 발전기 권선단부의 전자기력과 동특성 해석)

  • 김철홍;주영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.826-831
    • /
    • 2001
  • Electromagnetic forces generate vibrations in the end-winding of large generators. A finite element analysis using a commercial S/W is performed to calculate electromagnetic force of end-winding in two pole generator for 500 MW fossil power plant. Also, this paper presents analytical and experimental modal analysis results of generator end- winding. Using validated FE model, 3D electromagnetic model which computes the forces on the end-winding is coupled with a 3D mechanical model which calculates the dynamic displacement and stress under electromagnetic forces. These results will be used to evaluate reliability of end-winding and applied to update model.

  • PDF

A Study on the Controller Design for Active Vibration Control of flexible Cantilever Beam using Electromagnetic Actuators. (전자석 작동기를 이용한 유연 외팔보의 능동 진동 제어를 위한 제어기 설계에 관한 연구)

  • 최수영;정준홍;박기헌
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.30-41
    • /
    • 2004
  • This paper is concerned with the active vibration control of flexible cantilever beam system using electromagnetic farce actuator. The main objective of this paper is to propose the control algorithms and to implement the experimental setups for active vibration control. Dynamic equations of the electromagnetic actuator and the beam are combined to find the transfer function from the electromagnetic actuator to the laser sensor. The final transfer function is determined by considering only the first and second modes, and experiments confirm that this model works well. Several control algorithms are proposed and implemented on the experimental setups to show their efficacy. These include a PID control design, an optimal H$_2$ control design, and a fuzzy PID control design. Effectiveness and performance of the designed controller were verified by both simulation and experiment results.

Vibration Analysis of the End-winding of Large Generator for Fossil Power Plant under Electromagnetic Excitation (대형 화력 발전용 발전기 권선단부의 전자기력에 의한 진동 해석)

  • 김철홍;주영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.350-355
    • /
    • 2003
  • This paper presents results of vibration analysis of a end-winding of large generator for fossil power plant. A finite element analysis using a commercial S/W is performed to calculate alternating electromagnetic forces, mainly of 120㎐ in 60㎐ machines, acting on the end-winding, and then to calculate forced response of the end-winding under electromagnetic forces. Also, this paper presents analytical and experimental modal analysis results of generator end-winding to validate FE model. We calculated forced response of end-winding on 120㎐, double rotating frequency. These results will be used to evaluate structural reliability of end-winding and applied to update model.

  • PDF

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control (전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Paeng, Yong-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.