• Title/Summary/Keyword: electromagnetic modeling

Search Result 419, Processing Time 0.028 seconds

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding (전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구)

  • Lee, Jun-yong;Lee, Hun-jo;Oh, Hwa-suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling (3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램)

  • Perez, Marlon;Hernandez, Daniel;Michel, Eric;Cho, Min Hyoung;Lee, Soo Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

Study of Radio Frequency Thawing for Cylindrical Pork Sirloin

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.108-115
    • /
    • 2016
  • Purpose: Radio frequency (RF) heating is a promising thawing method, but it frequently causes undesirable problems such as non-uniform heating. This can occur because of the food shape, component distribution, and initial temperature differences between food parts. In this study, RF heating was applied to the thawing of cylindrically shaped pork sirloin by changing the shape of electrodes and the surrounding temperature. Methods: Curved electrodes were utilized to increase the thawing uniformity of cylindrically shaped frozen meat. Pork sirloin in the shape of a half-circle column was frozen in a deep freezer at $-70^{\circ}C$ and then thawed by RF heating with flat and curved electrodes. In order to prevent fast defrosting of the food surface by heat transfer from air to the food, the temperature of the thawing chamber was varied by -5, -10, and $-20^{\circ}C$. The temperature values of the frozen pork sirloin during RF thawing were measured using fiber-optic thermo sensors. Results: After multiple applications of curved electrodes resembling the food shape, and a cooled chamber at $-20^{\circ}C$ the half-cylindrically shaped meat was thawed without surface burning, and the temperature values of each point were similarly increased. However, with the parallel electrode, the frozen meat was partially burned by RF heating and the temperature values of center were overheated. The uniform heating rate and heat transfer prevention from air to the food were crucial factors for RF thawing. In this study, these crucial factors were accomplished by using a curved electrode and lowering the chamber temperature. Conclusions: The curved shape of the electrode and the equipotential surface calculated from the modeling of the parallel capacitor showed the effect of uniform heating of cylindrically shaped frozen food. Moreover, the low chamber temperature was effective on the prevention of the surface burning during RF thawing.

NEAR REAL-TIME IONOSPHERIC MODELING USING A RBGIONAL GPS NETWORK (지역적 GPS 관측망을 이용한 준실시간 전리층 모델링)

  • Choi, Byung-Kyu;Park, Jong-Uk;Chung, Jeong-Kyun;Park, Phil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • Ionosphere is deeply coupled to the space environment and introduces the perturbations to radio signal because of its electromagnetic characteristics. Therefore, the status of ionosphere can be estimated by analyzing the GPS signal errors which are penetrating the ionosphere and it can be the key to understand the global circulation and change in the upper atmosphere, and the characteristics of space weather. We used 9 GPS Continuously Operating Reference Stations (CORS), which have been operated by Korea Astronomy and Space Science Institute (KASI) , to determine the high precision of Total Electron Content (TEC) and the pseudorange data which is phase-leveled by a linear combination with carrier phase to reduce the inherent noise. We developed the method to model a regional ionosphere with grid form and its results over South Korea with $0.25^{\circ}\;by\;0.25^{\circ}$ spatial resolution. To improve the precision of ionosphere's TEC value, we applied IDW (Inverse Distance Weight) and Kalman Filtering method. The regional ionospheric model developed by this research was compared with GIMs (Global Ionosphere Maps) preduced by Ionosphere Working Group for 8 days and the results show $3\~4$ TECU difference in RMS values.

The Principles and Practice of Induced Polarization Method (유도분극 탐사의 원리 및 활용)

  • Kim, Bitnarae;Nam, Myung Jin;Jang, Hannuree;Jang, Hangilro;Son, Jeong-Sul;Kim, Hee Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.100-113
    • /
    • 2017
  • Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.