• Title/Summary/Keyword: electromagnetic force.

Search Result 651, Processing Time 0.025 seconds

Reduction of Noise and Vibration in SRM Using Current Shape Control

  • Cho, Kyung-Sik;Kwon, Sung-Ha;Park, Hong-Bae;Han, Jeong-Yup;Jeung, Eun-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1023-1027
    • /
    • 2004
  • Since the change of the radial electromagnetic force is a main cause of noise and vibration of the SRM, this paper proposes a method to reduce the change of the electromagnetic force of an SRM. The technique is based on the control of the current shape associated with each phase using switches of the converter to drive an SRM. And we analyze the relation between the derivative of the radial electromagnetic force and the phase currents. A simulation is given to demonstrate our results.

  • PDF

Optimal Design of Electromagnetic Actuator with Divided Coil Excitation to Increase Clamping Force

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.446-450
    • /
    • 2014
  • This paper performed the optimal design of electromagnetic linear actuator with divided coil excitation. The table of orthogonal array and response surface methodology (RSM) are applied to maximize the clamping force of the electromagnetic linear actuator with colenoid (COL) and multipolar solenoid (MPS) excitation. The analysis results show that the clamping force of the optimal models with COL and MPS excitation are increased by 41% and 54% at the gap of 0mm compared to the initial models, respectively.

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.

Development of Cable Lug Joint Using Electromagnetic Force (전자기력을 이용한 케이블 러그 조인트 개발)

  • Shim, Ji-Yeon;Kang, Bong-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.156-161
    • /
    • 2013
  • Recently, there has been a trend in the manufacturing process to focus on the durability of cable lug joint, especially in welding process due to the poor cable lug joint causes many troubles on products and workers during manufacturing process. Therefore development of high quality cable lug joint is important for successful manufacturing process and safety of worker. The Magnetic Pulse Forming(MPF) is one of efficient way to developed a high quality cable lug joint. In MPF, a high strain rate forming process, utilizes a high velocity oblique collision on the workpiece to be formed in required shape. The objective of this paper is to develop of high quality cable lug joint using electromagnetic force. To successfully accomplish this goal, section and electrical contact temperature of developed cable lug joint has been compared with various cable lug joint. Electrical contact temperature of developed cable lug joint by electromagnetic force is lower than manufactured cable lug joint by pressurer and hydraulic pressurer.

Manufacturing Al-scrap into Hypereutectic Al-Si Alloy by Using Electromagnetic Force (전자기력을 이용한 Al scrap으로 부터 과공정 Al-Si합금의 제조)

  • Yoon, Ji-Hyun;Moon, Kwang-Ho;Kim, Yong-Hyun;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.328-335
    • /
    • 2001
  • The objective of this study is to investigate on manufacturing Al-scrap into hypereutectic Al-Si alloy by using electromagnetic force. The Fe element in the aluminium scrap was controlled by intermetallic compound method and using EMF(electromagnetic force). The most lumped compound was found after 10min holding at $690^{\circ}C$. A number of segregated compound was revealed when imposed to EMF at 30A. The refinement of primary Si particles was achieved by EMF stirring. Primary Si particles were refined and spheroidized most of all with the magnetic intensity of 180G for 10 min.

  • PDF

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

Liquid Metal Flow Analysis for Electromagnetic Pump Design (액체금속 이송용 전자기 펌프 설계를 위한 유동해석)

  • Kwon, Jeong-Tae;Lim, Hyo-Jae;Kim, Seo-Hyun;Nam, Taek-Hun;Kim, Chang-Eob
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.137-144
    • /
    • 2008
  • The effect of Lorentz force(Electromagnetic force) on the liquid metal flow has been investigated. The flow velocity has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The liquid metal flow in the annular duct of an electromagnetic pump was analyzed with the Lorentz force varied.

  • PDF

A Study on the Attracting Force of an Electromagnetic Contactor with Shading Coil (Shading Coil이 장치된 전자개폐기의 흡인력에 관한 연구)

  • 김시화;노창주
    • Journal of the Korean Institute of Navigation
    • /
    • v.6 no.2
    • /
    • pp.35-55
    • /
    • 1982
  • The attempt of this paper is to examine the basic theory on the analysis of the effect of a shading coil fitted to an electromagnetic contactor, and to compare experimentally the attracting force of an AC electromagnetic contactor with that of a DC electromagnetic contactor, with varying the airgap length. Equations are also proposed for calculating the AC and DC attracting force per unit consumption wattage by using the circuit constants measured from the experiment, and these calculated attracting forces are compared with those actulally measured, and then, the experimental contactor is examined in the view of its design. The calculated attracting forces are appeared to coincide well with the measured ones and the experimental contactor fitted with shading coil is revealed not so well designed for reducing the fluctuation of the attracting force.

  • PDF

On the Physical Meaning of Maxwell Stress Tensor (맥스웰 응력텐서의 물리적 의미의 고찰)

  • Choi, Hong-Soon;Park, Il-Han;Moon, Won-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.725-734
    • /
    • 2009
  • Maxwell stress tensor is one of the methods which are generally used for electromagnetic force calculation. In this paper, it is presented that Maxwell stress tensor T and n${\cdot}$T have no physical meaning and therefore should not be used as sources of mechanical force for deformations or dynamics. The divergence of Maxwell stress tensor ${\nabla}{\cdot}T$ is the one which can acquire a physical identity and is electromagnetic body force density by an action at a distance like a gravity. This result can be derived from the principle of power balance, and also verified by some thought experiments. The virtual air-gap approach is proposed as a valid solution for the calculation of the body force.

Development of Forming Equipment Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 성형장비 개발)

  • Lee, H.M.;Ku, J.K.;Noh, H.G.;Song, W.J.;Ku, T.W.;Kang, B.S.;Kim, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.313-317
    • /
    • 2009
  • Electromagnetic forming(EMF) is a high-velocity forming process which uses electromagnetic Lorentz force. Advantages of this forming technique are improved formability, reduction in wrinkling, non-contact forming and applications of various forming process. But the application of electromagnetic forming technique is still limited in industry. Thus for continuous research and development of technique based on experiments, develop the forming equipment and carry out the forming experiments for validation of forming equipment.

  • PDF