• Title/Summary/Keyword: electrolyte solution

Search Result 777, Processing Time 0.031 seconds

HI concentration by EED for the HI decomposition in IS process (IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

Electrochemical Corrosion Characteristics of Dental Prostheses High-Palladium Alloys (치과용 고-Pd계 합금의 부식특성)

  • 김기주;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.511-518
    • /
    • 2001
  • In vitro corrosion resistance of the commercially used 76.5wt.%Pd-17.6%Cu-7.2%Ga and 77.3%Pd-6.0%Ga dental Prostheses high-Palladium system alloys in cast, degassing and porcelain-firing heat treatment conditions were evaluated by the potentiodynamic polarization technique in the de-aerated 0.9%NaCl and a modified Fusayama electrolyte. From the corrosion rate experimental results, we found that there is a small difference in the corrosion resistance depending on the microstructure. However. it was so small that there is no significant problem as a dental material. The 77.3%Pd-6.0%Ga showed better corrosion resistance than the 76.5%Pd-11.6%Cu-7.2%Ga dental Prostheses high-palladium system alloys. These experimental observations in 76.5%Pd-11.6%Cu-7.2%Ga alleys are mainly due to a rapid quenching and Cu in the alloy which accelerate the eutectic reaction with a segregation and Precipitates in the microstructure. On the ocher hand, 77.3%Pd-6.0%Ga alloys, which are solid-solution matrix, show much better col·lesion resistance compared with that of 76.5%Pd-11.6%Cu-7.2%Ga alloys.

  • PDF

A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking (물리적 가교결합을 이용한 sPEEK 전해질막의 특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.433-440
    • /
    • 2016
  • Composite membranes were prepared by the solution casting method from sulfonated poly(etheretherketone)(sPEEK) and imidazole and phosphotungstic acid(PWA) to enhance the electrolytic properties of the membrane. TGA measurements showed that physical crosslinking due to acid-base interactions improved the thermal resistance to the desulfonation of sulfonic acid groups of the composite membrane and the addition of PWA enhanced the resistance to thermal decomposition of the composite membrane. The acid-base interaction decreased the water uptake, proton conductivity and methanol permeability of the sPEEK/imidazole composite membranes. The addition of PWA increased the proton conductivities while it decreased the water uptake and methanol permeability of sPEEK/imidazole/PWA composite membranes. Therefore, the selectivity of the composite membranes was enhanced by the addition of PWA.

Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process (양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성)

  • Jeong, Dasol;Kim, Donghyun;Jung, Hyunsung
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.6
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

A New Circulation Method for Electrokinetic Remediation of Soil Contaminated with Lead (새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거)

  • 이현호;백기태;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • A new method has been proposed and developed that solves the problem of decreasing electroosmotic flow rate by excess $H^{+}$ and precipitation of heavy metal by $OH^{-}$. An electrolytic solution was circulated between the anode and cathode compartments that enabled the pH at the anode and cathode to be controlled. The change of the soil pH by circulation systems affects the operation time, by lowering the rate of increase of the electric potential gradient, and the removal efficiency of heavy metals, by affecting the soil pH. Since there was no effluent from the cathode compartment in circulation system, there was no need to treat the wastewater after the experiment, which resulted in the reduction of influent electrolyte volume.

Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder

  • Jang, Jun-Won;Park, Sung Jik;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2016
  • We compared the plausible reaction mechanism and quantitative efficiency of highly self-organized TiO2 nanotube (ntTiO2) film with TiO2 powder. Film was fabricated by electrochemical potentiostatic anodization of titanium thin film in an ethylene-glycol electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized water. Nanotubes with a pore size of 80-100 nm were formed by anodization at 60 V for 3 h. Humic acid (HA) was degraded through photocatalytic degradation using the ntTiO2 film. Pseudo first-order rate constants for 0.3 g of ntTiO2, 0.3 g TiO2 powder, and 1 g TiO2 powder were 0.081 min−1, 0.003 min−1, and 0.044 min−1, respectively. HA adsorption on the ntTiO2 film was minimal while adsorption on the TiO2 powder was about 20% based on thermogravimetric analysis. Approximately five-fold more normalized OH radicals were generated by the ntTiO2 film than the TiO2 powder. These quantitative findings explain why ntTiO2 film showed superior photocatalytic performance to TiO2 powder.

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Thermoelectric/electrical characterization of electrodeposited BixTey thin films (전기도금법에 의해 전착된 BixTey 박막의 전기 및 열전 특성)

  • Yu, In-Jun;Lee, Gyu-Hwan;Kim, Yang-Do;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.308-308
    • /
    • 2012
  • Electrodeposition of thermoelectric materials, including binary and ternary compounds, have been attracting attentions, because its many advantages including cost-effectiveness, rapid deposition rate, and ease of control their microstructure and crystallinity by adjusting electrodeposition parameters. In this work, $Bi_xTe_y$ films were potentiostatically electrodeposited using Au/Ni(80/20 nm)/Si substrate as the working electrode in solutions consisting of 10mM $TeO_2$ and 1M $HNO_3$ where $Bi(NO_3)_3$ was varied from 2.5 to 10 mM. Prior to electrodeposition potentiostatically, linear sweep voltammograms (LSV) were acquired with a standard three-electrode cell. The $Bi_xTe_y$ films deposited using the electrolyte containing low Bi ions shows p-type conductivity, which might be attributed by the large incorporation of Te phases. Near stoichiometric $Bi_2Te_3$ thin films were obtained from electrolytes containing 5mM $Bi(NO_3)_3$. This film shows the maximum Seebeck coefficient of $-100.3{\pm}12.7{\mu}V/K$. As the increase of Bi ions in electrolytes decreases the Seebeck coefficient and resistivity. The maximum power factor of $336.2{\mu}W/m{\cdot}K^2$ was obtained from the film deposited using the solution of 7.5mM $Bi(NO_3)_3$.

  • PDF

Assessing the anion type effect on the hydro-mechanical properties of smectite from macro and micro-structure aspects

  • Goodarzi, Amir R.;Akbari, Hamid R.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.183-200
    • /
    • 2014
  • The expansivity of clayey soils is a complicated phenomenon which may affect the stability of geotechnical structures and geo-environmental projects. In all common factors for the monitoring of soil expansion, less attention is given to anion type of pore space solutions. Therefore, this paper is concerned with the impact of various concentrations of different inorganic salts including NaCl, $Na_2SO_4$, and $Na_2CO_3$ on the macro and microstructure behavior of the expandable smectite clay. Comparison of the responses of the smectite/NaCl and smectite/$Na_2SO_4$ mixtures indicates that the effect of anion valance on the soil engineering properties is not very pronounced, regardless of the electrolyte concentration. However, at presence of carbonate as potential determining ions (PDIs) the swelling power increases up to 1.5 times compared to sulfate or chloride ions. The samples with $Na_2CO_3$ are also more deformable and show lower osmotic compressibility than the other mixtures. This demonstrates that the barrier performance of smectite greatly decreases in case of anions with the non-specific adsorption (e.g., $Cl^-$ and $SO{_4}^{2-}$) as the salinity of solution increases. Based on the results of the X-ray diffraction and sedimentation tests, the high soil volumetric changes upon exposure to carbonate is attributed to an increase in the repulsive forces between smectite basic unit layers due to the PDI effect of $CO{_3}^{2-}$ and increasing the pH level which enhance the buffering capacity of smectite. The study concluded that the nature of anion through its influence on the re-arrangement of soil microstructure and osmotic phenomena governs the hydro-mechanical parameters of expansive clays. It seems not coinciding with the double layer theory of the Gouy-Chapman double layer model.

Enantioselective electrophoretic behavior of lipoic acid in single and dual cyclodextrin systems

  • Le, Thi-Anh-Tuyet;Nguyen, Bao-Tan;Phan, Thanh Dung;Kang, Jong-Seong;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.143-152
    • /
    • 2021
  • Capillary electrophoresis (CE) is an effective technique to study chiral recognition because it offers flexibility in adjusting vital factors. Currently, various available cyclodextrins (CDs) can be employed for the chiral separation of numerous analytes. Herein, we investigate the enantioseparation behavior of lipoic acid enantiomers in various types of single and dual CD systems through CE. Additionally, several impacted CE parameters were optimized through the systematic investigation based on the design of experiment (DoE) concept for a single system comprising a heptakis (2,3,6-tri-O-methyl)-β-CD and a dual system containing the combination of the single CD with a sulfated-β-CD. Consequently, absolute enantioresolution was obtained within 15 min on a common standard bare fused-silica capillary (64.5/56 cm in total/effective length, 50/365 ㎛ inner/outer diameter), maintained at 15 ℃ and at an applied voltage of 24 kV. The optimal background electrolyte consisted of 6 mM heptakis (2,3,6-tri-O-methyl)-β-CD dissolved in the solution of 58 mM borate buffer at pH 10. Furthermore, the results of apparent binding constant experiments indicated that the S-enantiomer-heptakis (2,3,6-tri-O-methyl)-β-CD complex exhibited a stronger affinity than its R-enantiomer counterpart. The obtained electrophoretic mobility values could be utilized to interpret the resolution achieved at various CD concentrations and the mobility behavior of the complexes elucidated the migration order of the enantiomers in an electropherogram.